0、前言
跟随着人工智能浪潮,基于智能算法的故障诊断热度高涨不下,故障诊断文献在自动化、电力、机械和汽车四大学科领域的占比超过65%。滚动轴承、变压器、发动机等对象的故障诊断文献最多,最多应用的方法有神经网络、支持向量机、深度学习方法等。聚焦点有故障诊断方法、故障定位方法、故障特征提取方法、故障监测和故障预测等,其中故障预测与故障定位相关文献较少。基于深度学习、强化学习、集成学习范式的故障诊断近5年快速增长,但是基于平行学习和引导学习范式的相关研究很少。同样,针对小样本数据集和不平衡数据集的故障诊断方法近5年也得到越来越多研究者重视,需要广大学者们再接再厉。考虑领域的应用需求,个人建议研究学者可适当在这些方面进行深入研究。
1、故障诊断发文统计
图1 故障诊断发文趋势图
2、主要方法
基于SVM的故障诊断发文量统计:
图2 基于SVM的故障诊断
基于专家系统的故障诊断: