融合Cat混沌映射+精英反向策略+tent扰动+柯西变异的改进麻雀优化算法(IAMSSA)

本文探讨了融合精英策略、tent扰动和柯西变异的改进麻雀优化算法(IAMSSA)在求解函数极值问题上的优势。通过采用Cat混沌映射初始化种群,精英反向策略增强种群多样性,动态更新比例系数,以及改进的位置更新公式,算法避免了局部最优。tent扰动和柯西变异进一步提高了全局搜索能力。实验结果显示,IAMSSA在寻优效果上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0、前言

        本博文仿真验证融合精英策略tent扰动和柯西变异的改进麻雀优化算法(IAMSSA)在函数极值寻优上的效果。

1、改进点分析

        ①Cat混沌映射初始化种群:Cat映射是一个二维的可逆混沌映射,具有更好的遍历均匀性和更快的迭代速度,且在[0,1]间产生的混沌序列分布均匀。

        ②精英反向策略:利用精英个体比一般个体具备更有用信息的优势,通过当前种群中的精英个体构造出反向种群加入当前种群,增加种群的多样性,并从扩展后的新种群中选取最优的特定个体构成新一代个体,进入迭代更新。

        ③比例系数改进:r动态更新,动态调整发现者数量和意识到有危险麻雀数量

           PDNumber = round(pop*r); %发现者数量
           SDNumber = round(r*pop);%意识到有危险麻雀数量

        ④改进探索者位置更新公式

        ⑤tent扰动和柯西变异:防止陷入局部最优

2、效果展示

        

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值