先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
正文
由上述两端代码运行的时间可知:numpy
进行数组的创建计算的效率高于list
====================================================================
数组类型:一维数组,二维数组,多维数组
创建方法
-
np.array() list或者tuple
-
np.arange() np.inspace()
-
np.ones() np.zeors() np.eye() np.random.random()
把列表和元组转换成为数组:
l1=[1,2,3,4,5,6]
l2=(6,5,4,3,2,1)
arrl1=np.array(l1)
arrl2=np.array(l2)
print(arrl1)
print(arrl2)
很清楚的看到区别,使用了 np.array()
之后,数据之间的逗号会消失。
以下是以浮点型为例子探讨数组的一些属性。
当数组定义好之后,本身带有的一些常用属性:
| 属性 | 解释 |
| — | — |
| arr.ndim | 返回的是数组的维度,返回的只有一个数,该数即表示数组的维度。 |
| type(arr) | 返回数据类型。 |
| arr.shape | 表示各位维度大小的元组。返回的是一个元组。 |
| len(arr) | 返回数组长度。 |
| arr.size | 返回元素个数。 |
| arr.itemsize | 返回元素的大小,元素的大小是根据数据的类型来定义的。 |
| arr.strides | 返回元素的跨度,跨度指两个元素之间要跨过的字节数。 |
| arr.dtype | 一个用于说明数组数据类型的对象,返回的是该数组的数据类型。 |
l3=[1.1,3.0,5.1,9.7,4.5]
arr=np.array(l3)
print(‘数据类型:’,type(arr))
print(‘轴(维度):’,arr.ndim)
print(‘数组长度:’,len(arr))
print(‘元素个数:’,arr.size)
print(‘形状:’,arr.shape) #元组后面必须要加逗号
print(‘元素的大小:’,arr.itemsize)
print(‘元素类型:’,arr.dtype)
print(‘跨度:’,arr.strides)
如果是整形的数组:
数组也可以是字符串类型或者混合类型:
np.arange():
元素的间隔是固定的
函数返回一个有终点和起点的固定步长的排列,如[1,2,3,4,5],起点是1,终点是5,步长为1。
参数个数情况: np.arange()
函数分为一个参数,两个参数,三个参数三种情况
-
一个参数时,参数值为终点,起点取默认值0,步长取默认值1。
-
两个参数时,第一个参数为起点,第二个参数为终点,步长取默认值1。
-
三个参数时,第一个参数为起点,第二个参数为终点,第三个参数为步长,其中步长支持小数。
np.arange(8)
print(np.arange(2,8,2))
np.arange(2,8,2)
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
-
start
,开始的数字 -
stop
,结束的数字 -
num
,返回的数量 -
endpoint
,一个bool型变量 -
retstep
,一个bool型,True的话输出之间公差 -
dtype
,数据类型,类型有很多例如:np.bool…,可以自己指定
将2~8之间进行50等分:
np.linspace(2,8)
len(np.linspace(2,8))
np.linspace(2,8,4)
这就类似于微信的抢红包,每份金额都是相等的。
====================================================================
l3=[[1,3,5],[6,1,9.1]]
arr=np.array(l3)
print(‘数据类型:’,type(arr))
print(‘轴(维度):’,arr.ndim)
print(‘数组长度:’,len(arr))
print(‘元素个数:’,arr.size)
print(‘形状:’,arr.shape)
print(‘元素的大小:’,arr.itemsize)
print(‘元素类型:’,arr.dtype)
print(‘跨度:’,arr.strides)
l4=[[1,3,5],[6,1,9]]
arr=np.array(l4)
print(‘数据类型:’,type(arr))
print(‘轴(维度):’,arr.ndim)
print(‘数组长度:’,len(arr))
print(‘元素个数:’,arr.size)
print(‘形状:’,arr.shape)
print(‘元素的大小:’,arr.itemsize)
print(‘元素类型:’,arr.dtype)
print(‘跨度:’,arr.strides)
对比:l3和l4区别在于l3的元素含有float
类型,而l4都是int
类型
分析:
print(‘元素个数:’,arr.size) # 是把所有元素都统计在内部
结果:
元素个数: 6
print(‘形状:’,arr.shape)
#结果:
形状: (2, 3) # 表示两行三列
print(‘跨度:’,arr.strides) # 数组是两行三列,
此外,还可以构造全0和全1的数组:
np.zeros(10)
np.ones((2,4))
np.eye(3,3)
最后
🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
最后
🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-cP3GHVTp-1713329961989)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!