论文解读 | Mamba系列 | I2I-Mamba: 通过选择性状态空间建模的多模态医学图像合成

目录

概览

Abstract

Background

 Method

Experiment 

 可视化效果

Conclusion

Assignment

 历史文章


概览

论文标题:

I2I-Mamba: Multi-modal medical image synthesis via selective state space modeling

论文链接:

https://arxiv.org/pdf/2405.14022

代码链接:

https://github.com/icon-lab/I2I-Mamba


Abstract

本文提出了I2I-Mamba,一种基于选择性状态空间建模(SSM)的多模态医学图像合成方法。I2I-Mamba通过引入选择性状态空间模型,有效解决了传统方法在跨模态医学图像合成中存在的计算复杂度高、信息丢失等问题。该方法能够在保持高质量图像生成的同时,实现不同模态医学图像之间的灵活转换,为医学诊断、治疗计划制定等提供了有力支持。实验结果表明,I2I-Mamba在多个数据集上均取得了优异的表现,与现有方法相比,在图像质量、合成效率等方面均有所提升。

本文贡献:

1. 作者首次提出了I2I-Mamba方法,该方法基于选择性状态空间建模(SSM),为医学图像合成领域引入了一种全新的、高效的解决方案。

2. 设计了选择性状态空间模型,该模型能够精确捕捉医学图像中的关键信息,同时减少不必要的计算开销,实现了高效的状态空间表示。

3. I2I-Mamba不仅限于单一模态内的图像合成,还具备强大的跨模态转换能力,能够在不同医学成像模态(如CT与MRI)之间实现高质量的图像合成。

4. 通过优化模型结构和参数,I2I-Mamba在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值