目录
概览
论文标题:
I2I-Mamba: Multi-modal medical image synthesis via selective state space modeling
论文链接:
https://arxiv.org/pdf/2405.14022
代码链接:
https://github.com/icon-lab/I2I-Mamba
Abstract
本文提出了I2I-Mamba,一种基于选择性状态空间建模(SSM)的多模态医学图像合成方法。I2I-Mamba通过引入选择性状态空间模型,有效解决了传统方法在跨模态医学图像合成中存在的计算复杂度高、信息丢失等问题。该方法能够在保持高质量图像生成的同时,实现不同模态医学图像之间的灵活转换,为医学诊断、治疗计划制定等提供了有力支持。实验结果表明,I2I-Mamba在多个数据集上均取得了优异的表现,与现有方法相比,在图像质量、合成效率等方面均有所提升。
本文贡献:
1. 作者首次提出了I2I-Mamba方法,该方法基于选择性状态空间建模(SSM),为医学图像合成领域引入了一种全新的、高效的解决方案。
2. 设计了选择性状态空间模型,该模型能够精确捕捉医学图像中的关键信息,同时减少不必要的计算开销,实现了高效的状态空间表示。
3. I2I-Mamba不仅限于单一模态内的图像合成,还具备强大的跨模态转换能力,能够在不同医学成像模态(如CT与MRI)之间实现高质量的图像合成。
4. 通过优化模型结构和参数,I2I-Mamba在