数字人部署

在之前数字人模型优化,并且封装成模块之后,再进一步集成输入输出,前端输入大模型回答内容,也就是sentence参数,以及前端输入的role,对应需要的角色

1. 模型优化与模块封装

首先,我对数字人模型进行了优化,并将其封装成一个独立模块。这一模块能够处理从输入文本到输出视频的整个流程。为了实现这一目标,我进一步集成了输入输出功能

2. 输入参数与角色选择

在前端,用户可以输入他们想要大模型回答的内容,即 sentence 参数,同时选择需要的角色,这一参数用 role 表示。不同的角色对应不同的文本到语音转换(TTS)声音和图像,因此我们可以将这些步骤串联起来:

sentence & role => TTS => sadTalker => video

3. Flask 路由实现

通过一个 Flask 应用,将前端输入的文本和角色信息转化为动态视频,

以下是我们如何通过 Flask 路由来实现文本到视频的转换:

@app.route('/texttovideo')
def texttovideo():
    data = request.args
    sentence = data.get('sentence', 'Hello, I am SpeakSpark! Nice to meet you!')
    role = data.get('role','girl')
    voicename = '
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值