在之前数字人模型优化,并且封装成模块之后,再进一步集成输入输出,前端输入大模型回答内容,也就是sentence参数,以及前端输入的role,对应需要的角色
1. 模型优化与模块封装
首先,我对数字人模型进行了优化,并将其封装成一个独立模块。这一模块能够处理从输入文本到输出视频的整个流程。为了实现这一目标,我进一步集成了输入输出功能
2. 输入参数与角色选择
在前端,用户可以输入他们想要大模型回答的内容,即 sentence
参数,同时选择需要的角色,这一参数用 role
表示。不同的角色对应不同的文本到语音转换(TTS)声音和图像,因此我们可以将这些步骤串联起来:
sentence & role => TTS => sadTalker => video
3. Flask 路由实现
通过一个 Flask 应用,将前端输入的文本和角色信息转化为动态视频,
以下是我们如何通过 Flask 路由来实现文本到视频的转换:
@app.route('/texttovideo')
def texttovideo():
data = request.args
sentence = data.get('sentence', 'Hello, I am SpeakSpark! Nice to meet you!')
role = data.get('role','girl')
voicename = '