想要入门计算机视觉,一个月足以!但想要精通,还是需要深耕的~
我用8千字写了这份0基础保姆级究极简单的计算机视觉入门学习路线图(包含实战项目),保你一个月入门计算机视觉,分享给在座的大佬。
这个学习路线图一共有16个模块,完整学完之后可以从入门到精通了:
-
深度学习入门算法
-
深度学习框架TensorFlow与pytorch
-
OpenCV图像处理框架实战
-
综合项目-物体检测YOLO实战
-
图像分割实战
-
行为识别实战
-
transformer实战系列
-
3D点云实战
-
目标追踪与姿态估计实战
-
面向交通驾驶领域的深度学习实战
-
缺陷检测实战
-
行人重识别实战
-
对抗生成网络实战
-
强化学习实战系列
-
面向医学领域的深度学习实战
-
模型部署与剪枝优化
整个路线图的思维导图如下,我把对应的视频和链接全部放在了思维导图备注里面;
大家在学习的时候,可以搭配视频学习:获取思维导图方式如下:关注公众H【咕泡AI】回复【777】免费领取。
1.深度学习入门算法
深度学习⼊⻔视频课程从最基本的神经⽹络开始讲起,讲复杂的神经⽹络分成⼏个⼩模块,先对必备的知识点的细节进⾏详细讲解再拓展到整个神经⽹络,从神经⽹络的架构,细节进⾏全⾯分析,并使⽤python代码完成简易的神经⽹络,从效果上感受神经⽹络的强⼤。熟悉神经⽹络后再进军卷积神经⽹络 与递归神经⽹络,详解CNN与RNN的原理与细节。
这一模块的学习是比较基础的,但是非常的重要,7个小时可以学完,但是建议大家可以花费更多的时间去夯实基础。
2.深度学习框架TensorFlow与pytorch
深度学习的两个框架也主要是分成两个小部分与学习,从安装到代码实现,总共花费18个小时。
3.Opencv图像处理框架实战
本模块学习花费13个小时,可以快速掌握机器视觉领域必备知识点原理及其在opencv中的使用方法。需要注意的是所有的代码是使用python完成的,然后通过Debug模式 来⼀步步分析每⼀⾏代码的作⽤及其完成的效果。
建议大家在掌握图像处理必备方法及其功能实现,能熟练使用opencv框架进行计算机视觉项目开发之后再进行下一步学习。
4.综合项目-物体检测YOLO实战
本模块学习花费14个小时,主要学习以下内容:
-
01.深度学习经典检测⽅法概述
-
02.YOLO-V1整体思想与⽹络架构
-
03.YOLO-V2改进细节详解
-
04.YOLO-V3核⼼⽹络模型
-
05.基于V3版本进⾏源码解读
-
06.基于YOLO-V3训练⾃⼰的数据集与任务
-
07.YOLO-V4版本算法解读
-
08.V5版本项⽬配置
-
09.V5项⽬⼯程源码解读
5.图像分割实战
本模块学习花费8个小时,主要学习以下内容:
-
01.图像分割及其损失函数概述
-
02.卷积神经⽹络原理与参数解读
-
03.Unet系列算法讲解
-
04.unet医学细胞分割实战
-
05.U2NET显著性检测实战
-
06.deeplab系列算法
-
07.基于deeplabV3+版本进⾏VOC分割实战
-
08.医学⼼脏视频数据集分割建模实战
6.行为识别实战
本模块学习花费8个小时,主要学习以下内容:
-
01.slowfast算法知识点通俗解读
-
02.slowfast项⽬环境配置与配置⽂件
-
03.slowfast源码详细解读
-
04.基于3D卷积的视频分析与动作识别
-
05.视频异常检测算法与元学习
-
06.视频⼀场检测CVPR2021论⽂及其源码
7.transformer实战系列
本模块学习花费8个小时,主要学习以下内容:
-
01.⾃然语⾔处理通⽤框架BERT原理解读
-
02.Transformer在视觉中的应⽤VIT算法
-
03.VIT算法模型源码解读
-
04.swintransformer算法原理解析
-
05.swintransformer源码解读
-
06.基于Transformer的detr⽬标检测算法
-
07.detr⽬标检测源码解读
-
08.项⽬补充-⾕歌开源项⽬BERT源码解读与应⽤实例
-
09.项⽬补充-基于BERT的中⽂情感分析实战
8.3D点云实战
本模块学习花费7个小时,主要学习以下内容:
-
01.3D点云应⽤领域分析
-
02.3D点云PointNet算法
-
03.PointNet++算法解读
-
04.Pointnet++项⽬实战
-
05.点云补全PF-Net论⽂解读
-
06.点云补全实战解读
-
07.点云配准及其案例实战
9.目标追踪与姿态估计实战
本模块学习花费6个小时,主要学习以下内容:
-
01.姿态估计OpenPose系列算法解读
-
02.OpenPose算法源码分析
-
03.deepsort算法知识点解读
-
04.deepsort源码解读
-
05.YOLO-V4版本算法解读
-
06.V5版本项⽬配置
-
07.V5项⽬⼯程源码解读
10.面向交通驾驶领域的深度学习实战
本模块学习花费10个小时,主要学习以下内容:
-
01.深度估计算法及其原理解读
-
02.深度估计项⽬实战源码解读
-
03.⻋道线检测论⽂及其算法实现
-
04.基于深度学习的⻋道线检测项⽬实战
-
05.特征点匹配⽅法原理与论⽂分析
-
06.商汤最新特征点匹配算法实战
-
07.三维重建算法原理分析
-
08.TSDF⽅法应⽤与解读
-
09.商汤最新三维重建项⽬原理与源码解读
-
10.⼈体三维重建项⽬实战
11.缺陷检测实战
本模块学习花费7个小时,主要学习以下内容:
-
01.物体检测框架YOLO-V4版本算法解读
-
02.物体检测框架YOLO-V5版本项⽬配置
-
03.物体检测框架YOLO-V5项⽬⼯程源码解读
-
04.基于YOLOV5的钢材缺陷检测实战
-
05.Semi-supervised布料缺陷检测实战
-
06.Opnecv图像常⽤处理⽅法实例
-
07.Opnecv梯度计算与边缘检测实例
-
08.Opnecv轮廓检测与直⽅图
-
09.基于Opnecv缺陷检测项⽬实战
-
10.基于视频流⽔线的Opnecv缺陷检测项⽬
-
11.图像分割deeplab系列算法
-
12.基于deeplabV3+版本进⾏VOC分割实战 13.Deeplab铁质材料缺陷检测与开源项⽬应⽤流程
12.行人重识别实战
本模块学习花费8个小时,主要学习以下内容:
-
01.⾏⼈重识别原理及其应⽤
-
02.基于注意⼒机制的ReId模型论⽂解读
-
03.基于Attention的⾏⼈重识别项⽬实战
-
04.AAAI2020顶会算法精讲
-
05.基于⾏⼈局部特征融合的再识别实战
-
06.旷视研究院最新算法解读(基于图模型)
-
07.基于拓扑图的⾏⼈重识别项⽬实战
13.对抗生成网络实战
本模块学习花费9个小时,主要学习以下内容:
-
01.对抗⽣成⽹络架构原理与实战解析
-
02.基于CycleGan开源项⽬实战图像合成
-
03.stargan论⽂架构解析
-
04.stargan项⽬实战及其源码解读
-
05.基于starganvc2的变声器论⽂原理解读
-
06.starganvc2变声器项⽬实战及其源码解读
-
07.图像超分辨率重构实战
-
08.基于GAN的图像补全实战
-
09.基础补充-PyTorch卷积模型实例
-
10.基础补充-Tensorflow2版本卷积模型实例
14.强化学习实战系列
本模块学习花费7个小时,主要学习以下内容:
-
01.强化学习简介及其应⽤
-
02.PPO算法与公式推导
-
03.PPO实战-⽉球登陆器训练实例
-
04.Q-learning与DQN算法
-
05.DQN算法实例演⽰
-
06.DQN改进与应⽤技巧
-
07.Actor-Critic算法分析(A3C)
-
08.⽤A3C玩转超级⻢⾥奥
15.面向医学领域的深度学习实战
本模块学习花费12个小时,主要学习以下内容:
-
01.卷积神经⽹络原理与参数解读
-
02.PyTorch框架基本处理操作
-
03.PyTorch框架必备核⼼模块解读
-
04.基于Resnet的医学数据集分类实战
-
05.图像分割及其损失函数概述
-
06.Unet系列算法讲解
-
07.Unet医学细胞分割实战
-
08.deeplab系列算法
-
09.基于deeplabV3+版本进⾏VOC分割实战
-
10.基于deeplab的⼼脏视频数据诊断分析
-
11.YOLO系列物体检测算法原理解读
-
12.基于YOLO5细胞检测实战
-
13.知识图谱原理解读
-
14.Neo4j数据库实战
-
15.基于知识图谱的医药问答系统实战
-
16.词向量模型与RNN⽹络架构
-
17.医学糖尿病数据命名实体识别
16.模型部署与剪枝优化
本模块学习花费8个小时,主要学习以下内容:
-
01.PyTorch框架部署实践
-
02.YOLO-V3物体检测部署实例
-
03.docker实例演⽰
-
04.tensorflow-serving实战
-
05.模型减枝-NetworkSlimming算法分析
-
06.模型减枝-NetworkSlimming实战解读
-
07.Mobilenet三代⽹络模型架构
-
08.基础补充-PyTorch卷积模型实例
-
09.基础补充-Tensorflow2版本卷积模型实例
如果时间分配不过来或者时间不够,可以试一下四象限法去安排学习时间和学习任务,主要就是事情分为四个区,能更高效学习(之后会具体写一篇文章)。
根据上面提到的学习路线,希望大家可以扎扎实实学习,不要妄想一步登天。获取资料的方式:关注公众H【咕泡AI】回复【777】免费领取!