【线性代数】向量组及其线性组合

一、向量及向量组的基本定义

在这里插入图片描述

二、线性组合的定义

在这里插入图片描述

三、向量组与向量的线性表示

在这里插入图片描述

四、向量组的线性表示、向量组等价

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
使用Numpy计算

import numpy as np
A=np.mat([[1,1,1],[1,2,-1],[2,1,4],[2,3,0]])
B=np.mat([[1],[0],[3],[1]])
AB=np.concatenate((A,B),axis=1)
RA=np.linalg.matrix_rank(A)
RAB=np.linalg.matrix_rank(AB)
print(f'矩阵A的秩为:{RA}')
print(f'矩阵(A,B)的秩为:{RAB}')

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
使用Numpy计算

import numpy as np
A=np.mat([[1,3],[-1,1],[1,1],[-1,3]])
B=np.mat([[2,1,3],[0,1,-1],[1,0,2],[1,2,0]])
AB=np.concatenate((A,B),axis=1)
RA=np.linalg.matrix_rank(A)
RB=np.linalg.matrix_rank(B)
RAB=np.linalg.matrix_rank(AB)
print(f'矩阵A的秩为:{RA}')
print(f'矩阵B的秩为:{RB}')
print(f'矩阵(A,B)的秩为:{RAB}')

在这里插入图片描述
在这里插入图片描述

五、向量组线性表示总结

(1)向量组与向量的线性表示
在这里插入图片描述
(2)向量组与向量组之间的线性表示
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西瓜WiFi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值