第N3周:Pytorch文本分类入门

文本构建向量的基本原理:

版本信息:

一.数据加载

import  torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
 
 
 
warnings.filterwarnings("ignore")#忽略警告
#win10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device             

torchtext.datasets.AG_NEWS 是一个用于加载 AG News 数据集的 TorchText 数据集类。AG News 数据集是一个用于文本分类任务的常见数据集,其中包含四个类别的新闻文章:世界、科技、体育和商业。torchtext.datasets.AG_NEWS 类加载的数据集是一个列表,其中每个条目都是一个元组,包含以下两个元素:

  • 一条新闻文章的文本内容。
  • 新闻文章所属的类别(一个整数,从1到4,分别对应世界、科技、体育和商业)。

二、构建词典

from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator

tokenizer  = get_tokenizer('basic_english') # 返回分词器函数

def yield_tokens(data_iter):
    for _, text in data_iter:
        yield tokenizer(text)

vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"]) # 设置默认索引,如果找不到单词,则会选择默认索引

torchtext.data.utils.get_tokenizer 是一个用于将文本数据分词的函数。它返回一个分词器(tokenizer)函数,可以将一个字符串转换成一个单词的列表。这个函数可以接受两个参数:tokenizer和language,tokenizer参数指定要使用的分词器的名称。

vocab(['here', 'is', 'an', 'example'])
[475, 21, 30, 5297]
text_pipeline  = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: int(x) - 1
text_pipeline('here is the an example')

[475, 21, 2, 30, 5297]

三.生成数据批次和迭代器

from torch.utils.data import DataLoader

def collate_batch(batch):
    label_list, text_list, offsets = [], [], [0]
    
    for (_label, _text) in batch:
        # 标签列表
        label_list.append(label_pipeline(_label))
        
        # 文本列表
        processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
        text_list.append(processed_text)
        
        # 偏移量,即语句的总词汇量
        offsets.append(processed_text.size(0))
        
    label_list = torch.tensor(label_list, dtype=torch.int64)
    text_list  = torch.cat(text_list)
    offsets    = torch.tensor(offsets[:-1]).cumsum(dim=0) #返回维度dim中输入元素的累计和
    
    return label_list.to(device), text_list.to(device), offsets.to(device)

# 数据加载器
dataloader = DataLoader(train_iter,
                        batch_size=8,
                        shuffle   =False,
                        collate_fn=collate_batch)

四.定义模型

定义TextClassificationModel模型,首先对文本进行嵌入,然后对句子嵌入之后的结果进行均值聚合。

from torch import nn

class TextClassificationModel(nn.Module):

    def __init__(self, vocab_size, embed_dim, num_class):
        super(TextClassificationModel, self).__init__()
        
        self.embedding = nn.EmbeddingBag(vocab_size,   # 词典大小
                                         embed_dim,    # 嵌入的维度
                                         sparse=False) # 
        
        self.fc = nn.Linear(embed_dim, num_class)
        self.init_weights()

    def init_weights(self):
        initrange = 0.5
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc.weight.data.uniform_(-initrange, initrange)
        self.fc.bias.data.zero_()

    def forward(self, text, offsets):
        embedded = self.embedding(text, offsets)
        return self.fc(embedded)

self.embedding.weight.data.uniform_(-initrange, initrange)这段代码是在 PyTorch 框架下用于初始化神经网络的词嵌入层(embedding layer)权重的一种方法。这里使用了均匀分布的随机值来初始化权重,具体来说,其作用如下:

1、self.embedding: 这是神经网络中的词嵌入层(embedding layer)。词嵌入层的作用是将离散的单词表示(通常为整数索引)映射为固定大小的连续向量。这些向量捕捉了单词之间的语义关系,并作为网络的输入。

2、self.embedding.weight: 这是词嵌入层的权重矩阵,它的形状为 (vocab_size, embedding_dim),其中 vocab_size 是词汇表的大小,embedding_dim 是嵌入向量的维度。

3、self.embedding.weight.data: 这是权重矩阵的数据部分,我们可以在这里直接操作其底层的张量。

4、uniform_(-initrange, initrange): 这是一个原地操作(in-place operation),用于将权重矩阵的值用一个均匀分布进行初始化。均匀分布的范围为 [-initrange, initrange],其中 initrange 是一个正数。

通过这种方式初始化词嵌入层的权重,可以使得模型在训练开始时具有一定的随机性,有助于避免梯度消失或梯度爆炸等问题。在训练过程中,这些权重将通过优化算法不断更新,以捕捉到更好的单词表示。

五.定义实例

num_class  = len(set([label for (label, text) in train_iter]))
vocab_size = len(vocab)
em_size     = 64
model      = TextClassificationModel(vocab_size, em_size, num_class).to(device)

六、定义训练函数与评估函数

num_class  = len(set([label for (label, text) in train_iter]))
vocab_size = len(vocab)
em_size     = 64
model      = TextClassificationModel(vocab_size, em_size, num_class).to(device)

七、拆分数据集并运行模型

import time

def train(dataloader):
    model.train()  # 切换为训练模式
    total_acc, train_loss, total_count = 0, 0, 0
    log_interval = 500
    start_time   = time.time()

    for idx, (label, text, offsets) in enumerate(dataloader):
        
        predicted_label = model(text, offsets)
        
        optimizer.zero_grad()                    # grad属性归零
        loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值
        loss.backward()                          # 反向传播
        optimizer.step()  # 每一步自动更新
        
        # 记录acc与loss
        total_acc   += (predicted_label.argmax(1) == label).sum().item()
        train_loss  += loss.item()
        total_count += label.size(0)
        
        if idx % log_interval == 0 and idx > 0:
            elapsed = time.time() - start_time
            print('| epoch {:1d} | {:4d}/{:4d} batches '
                  '| train_acc {:4.3f} train_loss {:4.5f}'.format(epoch, idx, len(dataloader),
                                              total_acc/total_count, train_loss/total_count))
            total_acc, train_loss, total_count = 0, 0, 0
            start_time = time.time()

def evaluate(dataloader):
    model.eval()  # 切换为测试模式
    total_acc, train_loss, total_count = 0, 0, 0

    with torch.no_grad():
        for idx, (label, text, offsets) in enumerate(dataloader):
            predicted_label = model(text, offsets)
            
            loss = criterion(predicted_label, label)  # 计算loss值
            # 记录测试数据
            total_acc   += (predicted_label.argmax(1) == label).sum().item()
            train_loss  += loss.item()
            total_count += label.size(0)
            
    return total_acc/total_count, train_loss/total_count
from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 超参数
EPOCHS     = 10 # epoch
LR         = 5  # 学习率
BATCH_SIZE = 64 # batch size for training

criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None

train_iter, test_iter = AG_NEWS() # 加载数据
train_dataset = to_map_style_dataset(train_iter)
test_dataset  = to_map_style_dataset(test_iter)
num_train     = int(len(train_dataset) * 0.95)

split_train_, split_valid_ = random_split(train_dataset,
                                          [num_train, len(train_dataset)-num_train])

train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)
valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)
test_dataloader  = DataLoader(test_dataset, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)

for epoch in range(1, EPOCHS + 1):
    epoch_start_time = time.time()
    train(train_dataloader)
    val_acc, val_loss = evaluate(valid_dataloader)
    
    if total_accu is not None and total_accu > val_acc:
        scheduler.step()
    else:
        total_accu = val_acc
    print('-' * 69)
    print('| epoch {:1d} | time: {:4.2f}s | '
          'valid_acc {:4.3f} valid_loss {:4.3f}'.format(epoch,
                                           time.time() - epoch_start_time,
                                           val_acc,val_loss))

    print('-' * 69)

| epoch   1 |   500/ 1782 batches, accuracy    0.687
| epoch   1 |  1000/ 1782 batches, accuracy    0.856
| epoch   1 |  1500/ 1782 batches, accuracy    0.875
-----------------------------------------------------------
| end of epoch   1 | time: 23.15s | valid accuracy    0.881
-----------------------------------------------------------
| epoch   2 |   500/ 1782 batches, accuracy    0.898
| epoch   2 |  1000/ 1782 batches, accuracy    0.898
| epoch   2 |  1500/ 1782 batches, accuracy    0.903
-----------------------------------------------------------
| end of epoch   2 | time: 16.20s | valid accuracy    0.897
-----------------------------------------------------------
| epoch   3 |   500/ 1782 batches, accuracy    0.917
| epoch   3 |  1000/ 1782 batches, accuracy    0.915
| epoch   3 |  1500/ 1782 batches, accuracy    0.914
-----------------------------------------------------------
| end of epoch   3 | time: 15.98s | valid accuracy    0.902
-----------------------------------------------------------
| epoch   4 |   500/ 1782 batches, accuracy    0.924
| epoch   4 |  1000/ 1782 batches, accuracy    0.924
| epoch   4 |  1500/ 1782 batches, accuracy    0.922
-----------------------------------------------------------
| end of epoch   4 | time: 16.63s | valid accuracy    0.901
-----------------------------------------------------------
| epoch   5 |   500/ 1782 batches, accuracy    0.937
| epoch   5 |  1000/ 1782 batches, accuracy    0.937
| epoch   5 |  1500/ 1782 batches, accuracy    0.938
-----------------------------------------------------------
| end of epoch   5 | time: 16.37s | valid accuracy    0.912
-----------------------------------------------------------
| epoch   6 |   500/ 1782 batches, accuracy    0.938
| epoch   6 |  1000/ 1782 batches, accuracy    0.939
| epoch   6 |  1500/ 1782 batches, accuracy    0.940
-----------------------------------------------------------
| end of epoch   6 | time: 16.17s | valid accuracy    0.912
-----------------------------------------------------------
| epoch   7 |   500/ 1782 batches, accuracy    0.940
| epoch   7 |  1000/ 1782 batches, accuracy    0.938
| epoch   7 |  1500/ 1782 batches, accuracy    0.943
-----------------------------------------------------------
| end of epoch   7 | time: 16.20s | valid accuracy    0.911
-----------------------------------------------------------
| epoch   8 |   500/ 1782 batches, accuracy    0.941
| epoch   8 |  1000/ 1782 batches, accuracy    0.940
| epoch   8 |  1500/ 1782 batches, accuracy    0.942
-----------------------------------------------------------
| end of epoch   8 | time: 16.46s | valid accuracy    0.911
-----------------------------------------------------------
| epoch   9 |   500/ 1782 batches, accuracy    0.941
| epoch   9 |  1000/ 1782 batches, accuracy    0.941
| epoch   9 |  1500/ 1782 batches, accuracy    0.943
-----------------------------------------------------------
| end of epoch   9 | time: 17.50s | valid accuracy    0.912
-----------------------------------------------------------
| epoch  10 |   500/ 1782 batches, accuracy    0.940
| epoch  10 |  1000/ 1782 batches, accuracy    0.942
| epoch  10 |  1500/ 1782 batches, accuracy    0.942
-----------------------------------------------------------
| end of epoch  10 | time: 16.12s | valid accuracy    0.912
-----------------------------------------------------------

torchtext.data.functional.to_map_style_dataset 函数的作用是将一个迭代式的数据集(Iterable-style dataset)转换为映射式的数据集(Map-style dataset)。这个转换使得我们可以通过索引(例如:整数)更方便地访问数据集中的元素。

在 PyTorch 中,数据集可以分为两种类型:Iterable-style 和 Map-style。Iterable-style 数据集实现了 iter() 方法,可以迭代访问数据集中的元素,但不支持通过索引访问。而 Map-style 数据集实现了 getitem() 和 len() 方法,可以直接通过索引访问特定元素,并能获取数据集的大小。

TorchText 是 PyTorch 的一个扩展库,专注于处理文本数据。torchtext.data.functional 中的 to_map_style_dataset 函数可以帮助我们将一个 Iterable-style 数据集转换为一个易于操作的 Map-style 数据集。这样,我们可以通过索引直接访问数据集中的特定样本,从而简化了训练、验证和测试过程中的数据处理。

八、使用测试数据集评估模型

print('Checking the results of test dataset.')
test_acc, test_loss = evaluate(test_dataloader)
print('test accuracy {:8.3f}'.format(test_acc))

Checking the results of test dataset.
test accuracy    0.910

九.总结

模型构建
使用了EmbeddingBag和Linear层构建了一个简单的文本分类模型。
模型包含词嵌入层,将文本转换为固定大小的向量,随后通过一个全连接层进行分类。
训练过程
使用交叉熵损失函数(CrossEntropyLoss)和随机梯度下降优化器(SGD)。
实现了训练(train)和评估(evaluate)函数。
训练了10个epoch,每个epoch结束后在验证集上评估模型。
结果和调优
在训练过程中,如果验证集上的准确率没有提升,则减小学习率。
每个epoch结束后打印了时间和验证集上的准确率。

  • 23
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

房FF房

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值