目录
一、引言
在统计学和计量经济学中,普通最小二乘法(Ordinary Least Squares,OLS)是一种广泛应用的线性回归方法。当样本量较小时,正确使用和理解 OLS 模型对于得出可靠的结论至关重要。本文将详细介绍小样本 OLS 模型的理论原理,并通过 Stata 软件进行实际操作演示。
二、理论原理
OLS 模型的基本思想是通过最小化残差平方和来估计线性回归方程中的参数。对于一个简单的线性回归模型 y = β₀ + β₁x + ε
,我们的目标是找到参数 β₀
和 β₁
的估计值,使得实际观测值 y
与预测值 ŷ
之间的差异最小。
在小样本情况下,我们需要更加关注估计量的性质,如无偏性、有效性和一致性等。
三、小样本 OLS 和大样本 OLS 的区别
-
估计量的性质
- 在小样本中,OLS 估计量的无偏性和有效性等性质成立是基于一些严格的假设条件。例如,误差项需要满足正态分布等。
- 大样本中,即使某些假设条件不满足,根据中心极限定理,OLS 估计量仍然具有渐近无偏性和一致性。
-
统计推断
- 小样本下,进行统计推断(如 t 检验、F 检验)时