目录
一、引言
在统计学和计量经济学中,普通最小二乘法(Ordinary Least Squares,OLS)是一种广泛应用的线性回归方法,用于估计线性模型中的参数。本文将详细介绍大样本 OLS 模型的理论原理,并结合 Stata 软件进行具体的操作演示,同时补充小样本 OLS 和大样本 OLS 的区别。
二、理论原理
OLS 的基本思想是通过最小化残差平方和来估计模型的参数,使得观测值与模型预测值之间的差异最小。对于线性回归模型 Y = Xβ + ε
,其中 Y
是因变量向量,X
是自变量矩阵,β
是待估计的参数向量,ε
是误差项。
三、小样本 OLS 和大样本 OLS 的区别
-
抽样分布的性质:
- 小样本情况下,OLS 估计量的抽样分布可能不服从正态分布。
- 大样本时,根据中心极限定理,OLS 估计量的抽样分布趋近于正态分布。
-
有效性和一致性:
- 小样本中,OLS 估计量不一定是最有效的。
- 大样本下,OLS 估计量具有一致性,即随着样本量的增加,估计值趋近于真实参数值。
-
假设检验:
- 小样本的假设检验通常依赖于精确的分布假设,如 t 分布。
- 大样本可以基于渐近正态性进行假设检验,使用 z 检验。
-
对模型误差的容忍度:
- 小样本对模型的设定误差和异方差等问题较为敏感。
- 大样本对这些问题相对更稳健。
四、数据准备
我们使用 Stata 自带的数据集 auto.dta
作为示例,该