深度学习图像分类网络(一):VGG VGGNet16/19网络架构演变以及模型搭建

该博客详细介绍了VGG网络模型,特别是VGG16和VGG19的结构演变。通过堆叠3*3卷积核和1*1卷积来增加网络深度,探讨了这种设计如何影响参数数量和性能。VGG在ILSVRC-2014中取得优秀成绩,并启发了后续深度学习模型的设计。博客还涵盖了训练技巧和实战应用。
摘要由CSDN通过智能技术生成

一、论文介绍

论文名称:VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION 翻译:大规模图像识别的深度卷积神经网络

作者:Karen Simonyan & Andrew Zisserman

单位:VGG(牛津大学视觉几何组)

发表会议及时间:ICLR 201

介绍一下ILSVRC:大规模图像识别挑战赛 ImageNet Large Scale Visual Recognition Challenge 是李飞飞等人于2010年创办的图像识别挑 战赛,自2010起连续举办8年,极大地推动计算机视觉发展。比赛项目涵盖:图像分类(Classification)、目标定位(Object localization)、目标检测(Object detection)、视频目标检测(Object detection from video)、场景分类(Scene classification)、 场景解析(Scene parsing)。

竞赛中脱颖而出大量经典模型: alexnet,vgg,googlenet,resnet,densenet

二、论文摘要

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农男孩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值