CycleGAN论文:https://arxiv.org/pdf/1703.10593.pdf
一、前言
目前关于GAN应用,比较有意思的应用就是GAN用在图像风格迁移,图像降噪修复,图像超分辨率了,都有比较好的结果,详见pix2pix GAN 和cycle GAN。
pix2pixGAN参考:GAN系列之 pix2pixGAN 网络原理介绍以及论文解读
pix2pixGAN有一个明显的缺点就是,在进行训练的时候必须提供成对的数据集。比如当我们想生成梵高风格的画时,梵高本人画的作品肯定是相对较少的,这个时候就可以考虑使用cycleGAN。
二、什么是cycleGAN?
cycleGAN主要用于图像之间的转换,例如风格迁移。如下图所示