GANs系列:用于图像风格迁移的CycleGAN网络原理解读

本文深入解析CycleGAN网络原理,重点讨论循环一致性损失在图像到图像转换中的作用,以及如何通过这种方法实现非配对数据的风格迁移。此外,还介绍了判别器的结构和损失函数的定义,并提供了Pytorch版的代码实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CycleGAN论文:https://arxiv.org/pdf/1703.10593.pdf

一、前言

       目前关于GAN应用,比较有意思的应用就是GAN用在图像风格迁移,图像降噪修复,图像超分辨率了,都有比较好的结果,详见pix2pix GAN 和cycle GAN。

pix2pixGAN参考:GAN系列之 pix2pixGAN 网络原理介绍以及论文解读

      pix2pixGAN有一个明显的缺点就是,在进行训练的时候必须提供成对的数据集。比如当我们想生成梵高风格的画时,梵高本人画的作品肯定是相对较少的,这个时候就可以考虑使用cycleGAN。

二、什么是cycleGAN?

cycleGAN主要用于图像之间的转换,例如风格迁移。如下图所示

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农男孩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值