永磁同步电机无位置传感器控制技术之高频正弦波注入-----旋转高频注入法(理论推导)

本文详细讨论了永磁同步电机在低速下的数学模型,重点介绍了坐标变换、高频响应电流计算以及利用外差法提取转子位置的方法。通过简单的外差法处理,结合低通滤波器,最终实现转子位置的估计。
摘要由CSDN通过智能技术生成

       

图1 几种坐标系关系

      永磁同步迪电机在零低速下数学模型可以看成一个纯电感模型(忽略反电势(反电势信噪比低,占比低)、电阻压降(在高频信号激励下,电阻压降占比远小于电感压降)

\left[ {\begin{array}{*{20}{c}} {​{u_{dh}}}\\ {​{u_{qh}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {​{L_d}}&0\\ 0&{​{L_q}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {p{i_{dh}}}\\ {p{i_{qh}}} \end{array}} \right]  (1)

        定义坐标变换

                                         T(\theta ) = \left[ {\begin{array}{*{20}{c}} {\cos (\theta )}&{\sin (\theta )}\\ { - \sin (\theta )}&{\cos (\theta )} \end{array}} \right] (2)                                  

注:逆时针旋转,相当于左乘一个T(\theta ) 矩阵;顺时针旋转,相当于相当于左乘一个{T^{ - 1}}(\theta ) 矩阵。    

           d-q坐标系顺时针旋转\theta_{e}角度到\alpha-\beta坐标系,对于电压,则有                                                  \begin{array}{l} \left[ {\begin{array}{*{20}{c}} {​{u_{\alpha h}}}\\ {​{u_{\beta h}}} \end{array}} \right] = {T^{ - 1}}\left( {​{\theta _e}} \right)\left[ {\begin{array}{*{20}{c}} {​{u_{dh}}}\\ {​{u_{qh}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\cos ({\theta _e})}&{ - \sin ({\theta _e})}\\ {\sin ({\theta _e})}&{\cos ({\theta _e})} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {​{L_d}}&0\\ 0&{​{L_q}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {p{i_{dh}}}\\ {p{i_{qh}}} \end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}} {\frac{​{​{L_d} + {L_q}}}{2} + \frac{​{​{L_d} - {L_q}}}{2}\cos (2{\theta _e})}&{\frac{​{​{L_d} - {L_q}}}{2}\sin (2{\theta _e})}\\ {\frac{​{​{L_d} - {L_q}}}{2}\sin (2{\theta _e})}&{\frac{​{​{L_d} + {L_q}}}{2} - \frac{​{​{L_d} - {L_q}}}{2}\cos (2{\theta _e})} \end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}} {​{L_\Sigma } + {L_\Delta }\cos (2{\theta _e})}&{​{L_\Delta }\sin (2{\theta _e})}\\ {​{L_\Delta }\sin (2{\theta _e})}&{​{L_\Sigma } - {L_\Delta }\cos (2{\theta _e})} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {p{i_{\alpha h}}}\\ {p{i_{\beta h}}} \end{array}} \right] \end{array}  (3)

式(3)中,{L_\Sigma } = \frac{​{​{L_d} + {L_q}}}{2}{L_\Delta } = \frac{​{​{L_d} - {L_q}}}{2}

         则式(3)可以变为

\left[ {\begin{array}{*{20}{c}} {p{i_{\alpha h}}}\\ {p{i_{\beta h}}} \end{array}} \right] = {\left[ {\begin{array}{*{20}{c}} {​{L_\Sigma } + {L_\Delta }\cos (2{\theta _e})}&{​{L_\Delta }\sin (2{\theta _e})}\\ {​{L_\Delta }\sin (2{\theta _e})}&{​{L_\Sigma } - {L_\Delta }\cos (2{\theta _e})} \end{array}} \right]^{ - 1}}\left[ {\begin{array}{*{20}{c}} {​{u_{\alpha h}}}\\ {​{u_{\beta h}}} \end{array}} \right]    (4)

注入的正弦波形式为

\left[ {\begin{array}{*{20}{c}} {​{u_{\alpha h}}}\\ {​{u_{\beta h}}} \end{array}} \right] = {v_h}\left[ {\begin{array}{*{20}{c}} {\cos ({\omega _h}t)}\\ {\sin ({\omega _h}t)} \end{array}} \right](5)

将式(5)带入式(4)可得则\alpha-\beta坐标系下高频响应电流为

\begin{array}{l} \left[ {\begin{array}{*{20}{c}} {​{i_{\alpha h}}}\\ {​{i_{\beta h}}} \end{array}} \right] = {\left[ {\begin{array}{*{20}{c}} {​{L_\Sigma } + {L_\Delta }\cos (2{\theta _e})}&{​{L_\Delta }\sin (2{\theta _e})}\\ {​{L_\Delta }\sin (2{\theta _e})}&{​{L_\Sigma } - {L_\Delta }\cos (2{\theta _e})} \end{array}} \right]^{ - 1}}\int {\left[ {\begin{array}{*{20}{c}} {​{u_{\alpha h}}}\\ {​{u_{\beta h}}} \end{array}} \right]} \\ = K\left[ {\begin{array}{*{20}{c}} {​{L_\Sigma }\sin ({\omega _h}t) + {L_\Delta }\sin (2{\theta _e} - {\omega _h}t)}\\ { - {L_\Sigma }\cos ({\omega _h}t) - {L_\Delta }\cos (2{\theta _e} - {\omega _h}t)} \end{array}} \right] \end{array}(6)

式(6)中,K=\frac{​{​{v_h}}}{​{​{\omega _h}(L_\Sigma ^2 - L_\Delta ^2)}}。接下来需要从高频响应电流中提取出角度\theta_{e},本文采取较为简单的外差法解耦转子位置(不采用同步轴系滤波器,太复杂,容易绕晕),如图2所示。

图2 外差法转子位置提取法

                           \begin{array}{l} {i_{\alpha h}}.\cos (2{​{\hat \theta }_e} - {\omega _h}t) + {i_{\beta h}}.\sin (2{​{\hat \theta }_e} - {\omega _h}t)\\ = K{L_\Sigma }\sin (2{\omega _h}t - 2{​{\hat \theta }_e}) + K{L_\Delta }\sin (2{\theta _e} - 2{​{\hat \theta }_e}) \end{array}(7)

式子(7)第一项为高频分量,第二项为我们所需要的转子位置误差项,此时仅需要一个低通滤波器便可以滤除第一项,得到第二项(当然这也是忽略了LPF给第二项带来的角度延迟与幅值衰减,也有更好的算法解决这个延迟问题,需要自己去研究设计)。

        第二项可以近似为(系统进入稳态,\sin (2{\theta _e} - 2{​{\hat \theta }_e}) \approx 2{\theta _e} - 2{​{\hat \theta }_e}

                                 \begin{array}{l} \varepsilon \approx {K_1}({\theta _e} - {​{\hat \theta }_e})\\ \end{array}       (8)

式(8)中,{K_1} = 2K{L_\Delta }

之后就是老生常谈的锁相环环节,最终可以得到估计角度信息{\hat \theta }_e

  • 8
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值