永磁同步电机无位置传感器控制技术之高频正弦波注入-----旋转高频注入法(理论推导)

本文详细讨论了永磁同步电机在低速下的数学模型,重点介绍了坐标变换、高频响应电流计算以及利用外差法提取转子位置的方法。通过简单的外差法处理,结合低通滤波器,最终实现转子位置的估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       

图1 几种坐标系关系

      永磁同步迪电机在零低速下数学模型可以看成一个纯电感模型(忽略反电势(反电势信噪比低,占比低)、电阻压降(在高频信号激励下,电阻压降占比远小于电感压降)

\left[ {\begin{array}{*{20}{c}} {​{u_{dh}}}\\ {​{u_{qh}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {​{L_d}}&0\\ 0&{​{L_q}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {p{i_{dh}}}\\ {p{i_{qh}}} \end{array}} \right]  (1)

        定义坐标变换

                                         T(\theta ) = \left[ {\begin{array}{*{20}{c}} {\cos (\theta )}&{\sin (\theta )}\\ { - \sin (\theta )}&{\cos (\theta )} \end{array}} \right] (2)                                  

注:逆时针旋转,相当于左乘一个T(\theta ) 矩阵;顺时针旋转,相当于相当于左乘一个{T^{ - 1}}(\theta ) 矩阵。    

           d-q坐标系顺时针旋转\theta_{e}角度到\alpha-\beta坐标系,对于电压,则有                                                  \begin{array}{l} \left[ {\begin{array}{*{20}{c}} {​{u_{\alpha h}}}\\ {​{u_{\beta h}}} \end{array}} \right] = {T^{ - 1}}\left( {​{\theta _e}} \right)\left[ {\begin{array}{*{20}{c}} {​{u_{dh}}}\\ {​{u_{qh}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\cos ({\theta _e})}&{ - \sin ({\theta _e})}\\ {\sin ({\theta _e})}&{\cos ({\theta _e})} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {​{L_d}}&0\\ 0&{​{L_q}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {p{i_{dh}}}\\ {p{i_{qh}}} \end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}} {\frac{​{​{L_d} + {L_q}}}{2} + \frac{​{​{L_d} - {L_q}}}{2}\cos (2{\theta _e})}&{\frac{​{​{L_d} - {L_q}}}{2}\sin (2{\theta _e})}\\ {\frac{​{​{L_d} - {L_q}}}{2}\sin (2{\theta _e})}&{\frac{​{​{L_d} + {L_q}}}{2} - \frac{​{​{L_d} - {L_q}}}{2}\cos (2{\theta _e})} \end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}} {​{L_\Sigma } + {L_\Delta }\cos (2{\theta _e})}&{​{L_\Delta }\sin (2{\theta _e})}\\ {​{L_\Delta }\sin (2{\theta _e})}&{​{L_\Sigma } - {L_\Delta }\cos (2{\theta _e})} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {p{i_{\alpha h}}}\\ {p{i_{\beta h}}} \end{array}} \right] \end{array}  (3)

式(3)中,{L_\Sigma } = \frac{​{​{L_d} + {L_q}}}{2}{L_\Delta } = \frac{​{​{L_d} - {L_q}}}{2}

         则式(3)可以变为

\left[ {\begin{array}{*{20}{c}} {p{i_{\alpha h}}}\\ {p{i_{\beta h}}} \end{array}} \right] = {\left[ {\begin{array}{*{20}{c}} {​{L_\Sigma } + {L_\Delta }\cos (2{\theta _e})}&{​{L_\Delta }\sin (2{\theta _e})}\\ {​{L_\Delta }\sin (2{\theta _e})}&{​{L_\Sigma } - {L_\Delta }\cos (2{\theta _e})} \end{array}} \right]^{ - 1}}\left[ {\begin{array}{*{20}{c}} {​{u_{\alpha h}}}\\ {​{u_{\beta h}}} \end{array}} \right]    (4)

注入的正弦波形式为

\left[ {\begin{array}{*{20}{c}} {​{u_{\alpha h}}}\\ {​{u_{\beta h}}} \end{array}} \right] = {v_h}\left[ {\begin{array}{*{20}{c}} {\cos ({\omega _h}t)}\\ {\sin ({\omega _h}t)} \end{array}} \right](5)

将式(5)带入式(4)可得则\alpha-\beta坐标系下高频响应电流为

\begin{array}{l} \left[ {\begin{array}{*{20}{c}} {​{i_{\alpha h}}}\\ {​{i_{\beta h}}} \end{array}} \right] = {\left[ {\begin{array}{*{20}{c}} {​{L_\Sigma } + {L_\Delta }\cos (2{\theta _e})}&{​{L_\Delta }\sin (2{\theta _e})}\\ {​{L_\Delta }\sin (2{\theta _e})}&{​{L_\Sigma } - {L_\Delta }\cos (2{\theta _e})} \end{array}} \right]^{ - 1}}\int {\left[ {\begin{array}{*{20}{c}} {​{u_{\alpha h}}}\\ {​{u_{\beta h}}} \end{array}} \right]} \\ = K\left[ {\begin{array}{*{20}{c}} {​{L_\Sigma }\sin ({\omega _h}t) + {L_\Delta }\sin (2{\theta _e} - {\omega _h}t)}\\ { - {L_\Sigma }\cos ({\omega _h}t) - {L_\Delta }\cos (2{\theta _e} - {\omega _h}t)} \end{array}} \right] \end{array}(6)

式(6)中,K=\frac{​{​{v_h}}}{​{​{\omega _h}(L_\Sigma ^2 - L_\Delta ^2)}}。接下来需要从高频响应电流中提取出角度\theta_{e},本文采取较为简单的外差法解耦转子位置(不采用同步轴系滤波器,太复杂,容易绕晕),如图2所示。

图2 外差法转子位置提取法

                           \begin{array}{l} {i_{\alpha h}}.\cos (2{​{\hat \theta }_e} - {\omega _h}t) + {i_{\beta h}}.\sin (2{​{\hat \theta }_e} - {\omega _h}t)\\ = K{L_\Sigma }\sin (2{\omega _h}t - 2{​{\hat \theta }_e}) + K{L_\Delta }\sin (2{\theta _e} - 2{​{\hat \theta }_e}) \end{array}(7)

式子(7)第一项为高频分量,第二项为我们所需要的转子位置误差项,此时仅需要一个低通滤波器便可以滤除第一项,得到第二项(当然这也是忽略了LPF给第二项带来的角度延迟与幅值衰减,也有更好的算法解决这个延迟问题,需要自己去研究设计)。

        第二项可以近似为(系统进入稳态,\sin (2{\theta _e} - 2{​{\hat \theta }_e}) \approx 2{\theta _e} - 2{​{\hat \theta }_e}

                                 \begin{array}{l} \varepsilon \approx {K_1}({\theta _e} - {​{\hat \theta }_e})\\ \end{array}       (8)

式(8)中,{K_1} = 2K{L_\Delta }

之后就是老生常谈的锁相环环节,最终可以得到估计角度信息{\hat \theta }_e

### 永磁同步电机高频注入原理 永磁同步电机(PMSM)的高频注入主要利用了电机绕组中的电感和电阻特性来实现特定功能。当向电机施加高频电压时,由于电机定子绕组的存在,会在绕组中感应出相应的电流分量。这些电流可以用来提取电机的位置信息或其他参数。 对于脉振方波高频注入而言,通过在电机相位上叠加一定频率范围内的正弦或矩形波形式的高频信号,可以在不干扰正常工作状态的情况下获取额外的信息[^1]。具体来说: - **位置检测**:高频信号能够激发转子磁场的变化,从而使得定子侧产生响应性的谐波成分; - **启动辅助**:有助于克服静摩擦力并提供初始转动方向指示; ```matlab % MATLAB/Simulink 中模拟高频方波注入过程 function y = highFreqSquareWaveInjection(t) % 参数设定 amplitude = 1; % 幅度设置为单位幅值 frequency = 500e3; % 注入信号频率设为500kHz % 计算输出 y = square(2*pi*frequency*t)*amplitude; end ``` ### 高频注入的应用场景 此技术广泛应用于无传感器控制系统之中,尤其是在那些难以安装物理位置传感设备或者希望减少成本的地方。它允许控制器仅依靠电气测量就能估算出转子的实际方位角,进而完成精确的速度调节与定位操作[^2]。 另外,在某些特殊场合比如电动汽车驱动系统里,采用这种策略还可以改善系统的瞬态性能,并增强鲁棒性以应对负载突变等情况的发生。 ### 技术实现方式对比 相比于传统的固定模式下的高频方波注入方案,现代研究更多倾向于使用旋转式的高频信号源来进行改进优化。后者不仅保持了原有优点——即能够在较低速度区间内有效运作而不依赖外部反馈装置外,还进一步降低了因开关动作引起的电磁兼容性问题以及能量损失现象[^4]。 例如,在一个典型的实验案例中,研究人员选择了大约1kHz左右作为注入信号的基础频率,并成功实现了稳定可靠的零速至极慢速区间的无刷直流电动机控制效果展示。这表明即使是在非常缓慢甚至接近停止的状态下,也能借助于精心设计过的算获得满意的操控精度和服务寿命延长的优势[^5]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值