1.算法基本思想
在自然界中,蚂蚁群体在寻找食物的过程中,无论是蚂蚁与蚂蚁之间的协作还是蚂蚁与环境之间的交互均依赖于一种被称为信息素(Pheromone)的物质实现蚁群的间接通信,从而通过合作发现从蚁穴到食物源的最短路径。
蚂蚁在寻找食物的过程中往往是随机选择路径的,但它们能感知当前地面上的信息素浓度,并倾向于往信息素浓度高的方向行进。信息素由蚂蚁自身释放,是实现蚁群内间接通信的物质。由于较短路径上蚂蚁的往返时间比较短,单位时间内经过该路径的蚂蚁多,所以信息素的积累速度比较长路径快。因此,当后续蚂蚁在路口时,就能感知先前蚂蚁留下的信息,并倾向于选择一条较短的路径前行。这种正反馈机制使得越来越多的蚂蚁在巢穴与食物之间的最短路径上行进。由于其他路径上的信息素会随着时间蒸发,最终所有的蚂蚁都在最优路径上行进。
蚁群觅食现象与对应关系:
2 算法实现
其核心是正反馈的一个过程,最短路径上的信息素多,使得选着此路径的概率就大,但是需要注意的是概率大,不代表一定会选择这条路,因此不一定保证所有情况得到的一定是最短路径。(可能是局部最优解)
2.1 算法步骤
概率p的求解公式看着麻烦,起始就是简单的选择问题。假设i =1 ,一共{1,2,3,4}个城市
那么 p12 = τ1/τ12+τ13+τ14.
改进后选择路径的概率P就与dij(t)相关,较短路径的概率变大,较长概率路径变小。
其中ρ为信息素挥发量,在τij(t+1)时刻,信息素浓度就是前一时刻原有的信息素浓度(τij(t))乘上一个(1-挥发量)再加上上一轮新增的信息素。
注意 :上一波新增的是Q/Lk,每只蚂蚁的LK不一样,走过路径i到j的才能算作一次信息素累积,而没有走过路径ij的为0。
matlab 蚁群算法解决TSP
%%%%%%%%%%%%蚁群算法解决 TSP 问题%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%%%
clear all; %清除所有变量
close all; %清图
clc; %清屏
m = 50; %蚂蚁个数
Alpha = 1; %信息素重要程度参数
Beta = 5; %启发式因子重要程度参数
Rho = 0.1; %信息素蒸发系数
G = 200; %最大迭代次数
Q = 100; %信息素增加强度系数
C = [1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;...
3238 1229;4196 1044;4312 790;4386 570;3007 1970;2562 1756;...
2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;...
3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;...
3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;...
2370 2975]; %31 个省会城市坐标
%%%%%%%%%%%%%%%第一步:变量初始化%%%%%%%%%%%%%%
n = size(C,1); %n 表示问题的规模(城市个数)
D = zeros(n,n); %D 表示两个城市距离间隔矩阵
for i = 1:n
for j = 1:n
if i ~= j
D(i,j) = ((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j) = eps;
end
D(j,i) = D(i,j);
end
end
Eta = 1./D; %Eta 为启发因子,这里设为距离的倒数
Tau = ones(n,n); %Tau 为信息素矩阵
Tabu = zeros(m,n); %存储并记录路径的生成
NC = 1; %迭代计数器
R_best = zeros(G,n); %各代最佳路线
L_best = inf.*ones(G,1); %各代最佳路线的长度
figure(1); %优化解
while NC <= G
%%%%%%%%%%第二步:将 m 只蚂蚁放到 n 个城市上%%%%%%%%%%
Randpos = [];
for i = 1:(ceil(m/n))
Randpos = [Randpos,randperm(n)];
end
Tabu(:,1) = (Randpos(1,1:m))';
%%%第三步:m 只蚂蚁按概率函数选择下一座城市,完成各自的周游%%%%
for j = 2:n
for i = 1:m
visited = Tabu(i,1:(j-1)); %已访问的城市
J = zeros(1,(n-j+1)); %待访问的城市
P = J; %待访问城市的选择概率分布
Jc = 1;
for k = 1:n
if length(find(visited==k))==0
J(Jc) = k;
Jc = Jc+1;
end
end
%%%%%%%%%%%计算待选城市的概率分布%%%%%%%%%%%
for k = 1:length(J)
P(k) = (Tau(visited(end),J(k))^Alpha)...
*(Eta(visited(end),J(k))^Beta);
end
P = P/(sum(P));
%%%%%%%%%%%按概率原则选取下一个城市%%%%%%%%%
Pcum = cumsum(P);
Select = find(Pcum >= rand);
to_visit = J(Select(1));
Tabu(i,j) = to_visit;
end
end
if NC >= 2
Tabu(1,:) = R_best(NC-1,:);
end
%%%%%%%%%%%%%第四步:记录本次迭代最佳路线%%%%%%%%%%
L = zeros(m,1);
for i = 1:m
R = Tabu(i,:);
for j = 1:(n-1)
L(i) = L(i)+D(R(j),R(j+1));
end
L(i) = L(i)+D(R(1),R(n));
end
L_best(NC) = min(L);
pos = find(L==L_best(NC));
R_best(NC,:) = Tabu(pos(1),:);
%%%%%%%%%%%%%%%第五步:更新信息素%%%%%%%%%%%%%
Delta_Tau = zeros(n,n);
for i = 1:m
for j = 1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1)) = ...
Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1)) = ...
Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau = (1-Rho).*Tau+Delta_Tau;
%%%%%%%%%%%%%%%第六步:禁忌表清零%%%%%%%%%%%%%
Tabu = zeros(m,n);
%%%%%%%%%%%%%%%%%历代最优路线%%%%%%%%%%%%%%%
for i = 1:n-1
plot([ C(R_best(NC,i),1), C(R_best(NC,i+1),1)],...
[C(R_best(NC,i),2), C(R_best(NC,i+1),2)],'bo-');
hold on;
end
plot([C(R_best(NC,n),1), C(R_best(NC,1),1)],...
[C(R_best(NC,n),2), C(R_best(NC,1),2)],'ro-');
title(['优化最短距离:',num2str(L_best(NC))]);
hold off;
pause(0.005);
NC = NC+1;
end
%%%%%%%%%%%%%%%%%第七步:输出结果%%%%%%%%%%%%%%
Pos = find(L_best==min(L_best));
Shortest_Route = R_best(Pos(1),:); %最佳路线
Shortest_Length = L_best(Pos(1)); %最佳路线长度
figure(2),
plot(L_best)
xlabel('迭代次数')
ylabel('目标函数值')
title('适应度进化曲线')