1.LNS基本思路
LNS(Large Neighborhood Search)是一种启发式算法,用于解决组合优化问题。它是基于局部搜索的思想,但与传统的局部搜索算法不同,LNS通过在搜索过程中采用大规模变动来跳出局部最优解,并在此基础上进行小规模搜索以逐步改进当前解。
LNS算法的基本思路如下:
- 初始化:随机生成一个初始解作为当前解。
- 选择邻域结构:定义一个邻域结构,包括一组可行解的变动操作,例如插入、删除、交换等。
- 大邻域搜索:在当前解的基础上,进行大规模的变动操作,即选取多个操作来生成大量新的候选解。
- 小邻域搜索:从生成的候选解中选择一个子集进行小规模的搜索,并计算其目标函数值或适应度。
- 接受或拒绝:根据一定的策略,决定是否接受新生成的候选解,通常更好的解会被接受,但也允许一定程度上的劣化解以避免陷入局部最优。
- 更新:根据接受或拒绝的结果,更新当前解和相关参数。
- 终止条件:根据设定的终止条件,判断是否结束搜索,例如达到最大迭代次数、满足一定的收敛条件或达到预设的目标等。
- 输出结果:返回找到的最优解或近似最优解作为问题的解决方案。
LNS算法通过动态调整搜索策略和操作选择来逐步改进当前解,以便在搜索空间中寻找更好的解决方案。它灵活适用于各种组合优化问题,并且通常能够在合理的时间内找到较好的解决方案。
LNS实质上是通过交替使用destroy和repair两个方法逐步改善初始解。
那么究竟什么是destroy,什么是repair&