秃姐学AI系列之:多GPU并行 + 代码实现

目录

单机多卡并行

数据并行 VS 模型并行

总结

代码实现

从零开始实现

简单网络

向多个设备分发参数

allreduce函数

将一个小批量数据均匀地分布在多个GPU上

训练

简洁实现

训练


单机多卡并行

  • 一台机器可以安装多个GPU(1~16个)
  • 在训练和预测时,我们将一个小批量计算切分大多个GPU来达到加速目的
  • 常用切分方案有
    • 数据并行
    • 模型并行
    • 通道并行(数据 + 模型并行)

数据并行 VS 模型并行

  • 数据并行:将小批量分成 n 份,每个GPU拿到完整参数计算的一小块数据的梯度

    • 通常性能非常好

假如一个样本有 128 个数据,2 个GPU,每个GPU拿到 64 个样本,来计算这 64 个数据的梯度。每个GPU计算完这一块数据的梯度加起来,就会完成整个小批量数据的梯度计算

  • 模型并行:将模型分成 n 快,每个GPU拿到一块模型计算它的前向和方向结果 

    • 通常用于模型大到单GPU放不下

假如模型有 100 层,2 块GPU,每个GPU拿到50层。第一个GPU算完把数据拿给第二个GPU算。BUG 就是性能难优化,基本就是第 0 个GPU在运行的时候第 1 个GPU就会空着 

总结

  • 当一个模型能用单卡计算时,通常使用数据并行拓展到多卡上

  • 模型并行则用在超大模型上 

  • 有多种方法可以在多个GPU上拆分深度网络的训练。拆分可以在层之间、跨层或跨数据上实现。前两者需要对数据传输过程进行严格编排,而最后一种则是最简单的策略。

  • 数据并行训练本身是不复杂的,它通过增加有效的小批量数据量的大小提高了训练效率。

  • 在数据并行中,数据需要跨多个GPU拆分,其中每个GPU执行自己的前向传播和反向传播,随后所有的梯度被聚合为一,之后聚合结果向所有的GPU广播。

  • 小批量数据量更大时,学习率也需要稍微提高一些。

代码实现

从零开始实现

%matplotlib inline
import torch
from torch import nn
from torch.nn import functional as F
from d2l imoort torch as d2l

简单网络

用LeNet做实验(代码几乎直接抄过来的)

# 初始化模型参数
scale = 0.01
W1 = torch.randn(size=(20, 1, 3, 3)) * scale
b1 = torch.zeros(20)
W2 = torch.randn(size=(50, 20, 5, 5)) * scale
b2 = torch.zeros(50)
W3 = torch.randn(size=(800, 128)) * scale
b3 = torch.zeros(128)
W4 = torch.randn(size=(128, 10)) * scale
b4 = torch.zeros(10)
params = [W1, b1, W2, b2, W3, b3, W4, b4]

# 定义模型
def lenet(X, params):
    h1_conv = F.conv2d(input=X, weight=params[0], bias=params[1])
    h1_activation = F.relu(h1_conv)
    h1 = F.avg_pool2d(input=h1_activation, kernel_size=(2, 2), stride=(2, 2))
    h2_conv = F.conv2d(input=h1, weight=params[2], bias=params[3])
    h2_activation = F.relu(h2_conv)
    h2 = F.avg_pool2d(input=h2_activation, kernel_size=(2, 2), stride=(2, 2))
    h2 = h2.reshape(h2.shape[0], -1)
    h3_linear = torch.mm(h2, params[4]) + params[5]
    h3 = F.relu(h3_linear)
    y_hat = torch.mm(h3, params[6]) + params[7]
    return y_hat

# 交叉熵损失函数
loss = nn.CrossEntropyLoss(reduction='none')

向多个设备分发参数

对于高效的多GPU训练,我们需要两个基本操作。

  1. 我们需要向多个设备分发参数并附加梯度(get_params)。 如果没有参数,就不可能在GPU上评估网络。
  2. 需要跨多个设备对参数求和,也就是说,需要一个allreduce函数。
# (参数, 要存放参数的GPU)
def get_params(params, device):
    # 新的参数就是把老参数clone(这里隐去,因为如果直接to,CPU to CPU不会有任何操作,但是clone的话就会有复制。),然后复制到GPU上
    new_params = [p.to(device) for p in params]
    for p in new_params:
        p.requires_grad_()  # 对每一个p都需要设定参数
    return new_params

new_params = get_params(params, d2l.try_gpu(0))
print('b1 权重:', new_params[1])
print('b1 梯度:', new_params[1].grad) # 因为还没有做计算,所以grad应该是None

allreduce函数

将所有向量相加,并将其结果广播给所有GPU。请注意,我们需要将数据复制到累积结果的设备,才能使函数正常工作。

# data 是一个 list,有几个GPU,list就有几个元素
def allreduce(data):
    for i in range(1, len(data)):
        data[0][:] += data[i].to(data[0].device)  # 先把数据复制到GPU0,然后相加
    for i in range(1, len(data)):
        data[i][:] = data[0].to(data[i].device)  # 把新的结果复制回去

data = [torch.ones((1, 2), device=d2l.try_gpu(i)) * (i + 1) for i in range(2)]
print('allreduce之前:\n', data[0], '\n', data[1])
allreduce(data)
print('allreduce之后:\n', data[0], '\n', data[1])

将一个小批量数据均匀地分布在多个GPU上

我们需要一个简单的工具函数,将一个小批量数据均匀地分布在多个GPU上。 例如,有两个GPU时,我们希望每个GPU可以复制一半的数据。 因为深度学习框架的内置函数编写代码更方便、更简洁,所以在4×5矩阵上使用它进行尝试。

data = torch.arange(20).reshape(4, 5)
devices = [torch.device('cuda:0'), torch.device('cuda:1')]
split = nn.parallel.scatter(data, devices) # 用了API
print('input :', data)
print('load into', devices)
print('output:', split)

为了方便以后复用,我们定义了可以同时拆分数据和标签的split_batch函数。

def split_batch(X, y, devices):
    """将X和y拆分到多个设备上"""
    assert X.shape[0] == y.shape[0]
    return (nn.parallel.scatter(X, devices),
            nn.parallel.scatter(y, devices))

训练

现在我们可以在一个小批量上实现多GPU训练。 在多个GPU之间同步数据将使用刚才讨论的辅助函数 allreduce 和 split_and_load。 我们不需要编写任何特定的代码来实现并行性。 因为计算图在小批量内的设备之间没有任何依赖关系,因此它是“自动地”并行执行。

def train_batch(X, y, device_params, devices, lr):
    X_shards, y_shards = split_batch(X, y, devices)
    # 在每个GPU上分别计算损失
    ls = [loss(lenet(X_shard, device_W), y_shard).sum()
          for X_shard, y_shard, device_W in zip( # w是完整的,x、y只是一块
              X_shards, y_shards, device_params)]
    for l in ls:  # 反向传播在每个GPU上分别执行
        l.backward()
    # 将每个GPU的所有梯度相加,并将其广播到所有GPU
    with torch.no_grad():
        for i in range(len(device_params[0])):
            allreduce( # 对每一层的每个GPU,把梯度拿出来做 allreduce
                [device_params[c][i].grad for c in range(len(devices))])
    # 在每个GPU上分别更新模型参数
    for param in device_params:
        d2l.sgd(param, lr, X.shape[0]) # 在这里,我们使用全尺寸的小批量

计算起来有一定的串联性,这时候就要看框架是否会帮你做自动并行了,如果框架好的话,这段代码是可以自动并行的(MXNet、Tensorflow是没问题的)

现在,我们可以定义训练函数。 与之前略有不同:训练函数需要分配GPU并将所有模型参数复制到所有设备。 显然,每个小批量都是使用 train_batch 函数来处理多个GPU。 我们只在一个GPU上计算模型的精确度,而让其他GPU保持空闲,尽管这是相对低效的,但是使用方便且代码简洁。

def train(num_gpus, batch_size, lr):
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
    devices = [d2l.try_gpu(i) for i in range(num_gpus)]
    # 将模型参数复制到num_gpus个GPU,刚开始每个GPU的梯度都是一样的(同步SGD思路)
    device_params = [get_params(params, d) for d in devices]
    num_epochs = 10
    animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])
    timer = d2l.Timer()
    for epoch in range(num_epochs):
        timer.start()
        for X, y in train_iter:
            # 为单个小批量执行多GPU训练
            train_batch(X, y, device_params, devices, lr)
            torch.cuda.synchronize()
        timer.stop()
        # 在GPU0上评估模型
        animator.add(epoch + 1, (d2l.evaluate_accuracy_gpu(
            lambda x: lenet(x, device_params[0]), test_iter, devices[0]),))
    print(f'测试精度:{animator.Y[0][-1]:.2f},{timer.avg():.1f}秒/轮,'
          f'在{str(devices)}')

简洁实现

import torch
from torch import nn
from d2l import torch as d2l

让我们使用一个比从头实现的 LeNet 更有意义的网络,它依然能够容易地和快速地训练。我们选择的是 ResNet-18。因为输入的图像很小,所以稍微修改了一下。

区别在于,在开始时使用了更小的卷积核、步长和填充,而且删除了最大汇聚层。

def resnet18(num_classes, in_channels=1):
    """稍加修改的ResNet-18模型"""
    def resnet_block(in_channels, out_channels, num_residuals,
                     first_block=False):
        blk = []
        for i in range(num_residuals):
            if i == 0 and not first_block:
                blk.append(d2l.Residual(in_channels, out_channels,
                                        use_1x1conv=True, strides=2))
            else:
                blk.append(d2l.Residual(out_channels, out_channels))
        return nn.Sequential(*blk)

    # 该模型使用了更小的卷积核、步长和填充,而且删除了最大汇聚层
    net = nn.Sequential(
        nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm2d(64),
        nn.ReLU())
    net.add_module("resnet_block1", resnet_block(
        64, 64, 2, first_block=True))
    net.add_module("resnet_block2", resnet_block(64, 128, 2))
    net.add_module("resnet_block3", resnet_block(128, 256, 2))
    net.add_module("resnet_block4", resnet_block(256, 512, 2))
    net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
    net.add_module("fc", nn.Sequential(nn.Flatten(),
                                       nn.Linear(512, num_classes)))
    return net

训练

主要API:nn.DataParallel(net, GPU_LIST)

def train(net, num_gpus, batch_size, lr):
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
    devices = [d2l.try_gpu(i) for i in range(num_gpus)]
    def init_weights(m):
        if type(m) in [nn.Linear, nn.Conv2d]:
            nn.init.normal_(m.weight, std=0.01)
    net.apply(init_weights)
    # 在多个GPU上设置模型 DataParallel用处是:返回的新net会被用于每个GPU(用来替换我们上面收订把每个参数发配到不同GPU上的操作 包括后边的并行算梯度、求损失、相加等等)
    net = nn.DataParallel(net, device_ids=devices)
    trainer = torch.optim.SGD(net.parameters(), lr)
    loss = nn.CrossEntropyLoss()
    timer, num_epochs = d2l.Timer(), 10
    animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])
    for epoch in range(num_epochs):
        net.train()
        timer.start()
        for X, y in train_iter:
            trainer.zero_grad()
            X, y = X.to(devices[0]), y.to(devices[0])
            l = loss(net(X), y)
            l.backward()
            trainer.step()
        timer.stop()
        animator.add(epoch + 1, (d2l.evaluate_accuracy_gpu(net, test_iter),))
    print(f'测试精度:{animator.Y[0][-1]:.2f},{timer.avg():.1f}秒/轮,'
          f'在{str(devices)}')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值