【zer0pts CTF 2022】 Anti-Fermat(p、q生成不当)

本文探讨了如何利用两种方法对抗Fermat密钥生成:一是通过求近似值逼近素数p和q的关系,二是通过爆破法缩小p^((1<<1024)-1)与q的差距。通过实例展示了如何使用Python库进行计算并最终解密隐藏的flag。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目源码

from Crypto.Util.number import isPrime, getStrongPrime
from gmpy import next_prime
from secret import flag

# Anti-Fermat Key Generation
p = getStrongPrime(1024)
q = next_prime(p ^ ((1<<1024)-1))
n = p * q
e = 65537

# Encryption
m = int.from_bytes(flag, 'big')
assert m < n
c = pow(m, e, n)

print('n = {}'.format(hex(n)))
print('c = {}'.format(hex(c)))

#n = 0x1ffc7dc6b9667b0dcd00d6ae92fb34ed0f3d84285364c73fbf6a572c9081931be0b0610464152de7e0468ca7452c738611656f1f9217a944e64ca2b3a89d889ffc06e6503cfec3ccb491e9b6176ec468687bf4763c6591f89e750bf1e4f9d6855752c19de4289d1a7cea33b077bdcda3c84f6f3762dc9d96d2853f94cc688b3c9d8e67386a147524a2b23b1092f0be1aa286f2aa13aafba62604435acbaa79f4e53dea93ae8a22655287f4d2fa95269877991c57da6fdeeb3d46270cd69b6bfa537bfd14c926cf39b94d0f06228313d21ec6be2311f526e6515069dbb1b06fe3cf1f62c0962da2bc98fa4808c201e4efe7a252f9f823e710d6ad2fb974949751
#c = 0x60160bfed79384048d0d46b807322e65c037fa90fac9fd08b512a3931b6dca2a745443a9b90de2fa47aaf8a250287e34563e6b1a6761dc0ccb99cb9d67ae1c9f49699651eafb71a74b097fc0def77cf287010f1e7bd614dccfb411cdccbb84c60830e515c05481769bd95e656d839337d430db66abcd3a869c6348616b78d06eb903f8abd121c851696bd4cb2a1a40a07eea17c4e33c6a1beafb79d881d595472ab6ce3c61d6d62c4ef6fa8903149435c844a3fab9286d212da72b2548f087e37105f4657d5a946afd12b1822ceb99c3b407bb40e21163c1466d116d67c16a2a3a79e5cc9d1f6a1054d6be6731e3cd19abbd9e9b23309f87bfe51a822410a62

由两种方法,一种是求近似值,一种是爆破,我们先看求近似值的:

一、

p是p^((1<<1024)-1)的下一个素数

由异或性质得:

如果a>b,,且a为0b1111111111(二进制全为1),那么a^b=a-b

所以((1<<1024)-1)^p=(1<<1024-1)-p

设p^((1<<1024)-1)的下一个素数与p^((1<<1024)-1)相差r

则q=(1<<1024-1)-p+r

得到p+q=1<<1024-1+r

p+q\approx1<<1024

将p+q带入上式,得到p-q

两式相加除以二得到p的近似值

向后爆破知道取得n%p==0

from Crypto.Util.number import *
import gmpy2
n= 0x1ffc7dc6b9667b0dcd00d6ae92fb34ed0f3d84285364c73fbf6a572c9081931be0b0610464152de7e0468ca7452c738611656f1f9217a944e64ca2b3a89d889ffc06e6503cfec3ccb491e9b6176ec468687bf4763c6591f89e750bf1e4f9d6855752c19de4289d1a7cea33b077bdcda3c84f6f3762dc9d96d2853f94cc688b3c9d8e67386a147524a2b23b1092f0be1aa286f2aa13aafba62604435acbaa79f4e53dea93ae8a22655287f4d2fa95269877991c57da6fdeeb3d46270cd69b6bfa537bfd14c926cf39b94d0f06228313d21ec6be2311f526e6515069dbb1b06fe3cf1f62c0962da2bc98fa4808c201e4efe7a252f9f823e710d6ad2fb974949751
c = 0x60160bfed79384048d0d46b807322e65c037fa90fac9fd08b512a3931b6dca2a745443a9b90de2fa47aaf8a250287e34563e6b1a6761dc0ccb99cb9d67ae1c9f49699651eafb71a74b097fc0def77cf287010f1e7bd614dccfb411cdccbb84c60830e515c05481769bd95e656d839337d430db66abcd3a869c6348616b78d06eb903f8abd121c851696bd4cb2a1a40a07eea17c4e33c6a1beafb79d881d595472ab6ce3c61d6d62c4ef6fa8903149435c844a3fab9286d212da72b2548f087e37105f4657d5a946afd12b1822ceb99c3b407bb40e21163c1466d116d67c16a2a3a79e5cc9d1f6a1054d6be6731e3cd19abbd9e9b23309f87bfe51a822410a62
e=65537
t1=1<<1024
p=(2**1024+gmpy2.iroot((2**1024)**2-4*n,2)[0])//2
p=int(p)
while n%p!=0:
    p=gmpy2.next_prime(p)
q=n//p
phi=(p-1)*(q-1)
d=gmpy2.invert(e,phi)
m=pow(c,d,n)
print(long_to_bytes(m))
#b'Good job! Here is the flag:\n+-----------------------------------------------------------+\n| zer0pts{F3rm4t,y0ur_m3th0d_n0_l0ng3r_w0rks.y0u_4r3_f1r3d} |\n+-----------------------------------------------------------+'

二、爆破p^((1<<2=1024)-1)和q的差

因为q和p^((1<<2=1024)-1)的下一个素数,故两者相差很小

p^((1<<1024)-1)依然可以表示为(1<<1024-1)-p

q=(1<<1024-1)-p+r

p+q=(1<<1024-1)+r

因为p-q=\sqrt{(p+q)^2-4n}

所以p-q能开平方为一个判断条件:

from Crypto.Util.number import *
import gmpy2
n= 0x1ffc7dc6b9667b0dcd00d6ae92fb34ed0f3d84285364c73fbf6a572c9081931be0b0610464152de7e0468ca7452c738611656f1f9217a944e64ca2b3a89d889ffc06e6503cfec3ccb491e9b6176ec468687bf4763c6591f89e750bf1e4f9d6855752c19de4289d1a7cea33b077bdcda3c84f6f3762dc9d96d2853f94cc688b3c9d8e67386a147524a2b23b1092f0be1aa286f2aa13aafba62604435acbaa79f4e53dea93ae8a22655287f4d2fa95269877991c57da6fdeeb3d46270cd69b6bfa537bfd14c926cf39b94d0f06228313d21ec6be2311f526e6515069dbb1b06fe3cf1f62c0962da2bc98fa4808c201e4efe7a252f9f823e710d6ad2fb974949751
c = 0x60160bfed79384048d0d46b807322e65c037fa90fac9fd08b512a3931b6dca2a745443a9b90de2fa47aaf8a250287e34563e6b1a6761dc0ccb99cb9d67ae1c9f49699651eafb71a74b097fc0def77cf287010f1e7bd614dccfb411cdccbb84c60830e515c05481769bd95e656d839337d430db66abcd3a869c6348616b78d06eb903f8abd121c851696bd4cb2a1a40a07eea17c4e33c6a1beafb79d881d595472ab6ce3c61d6d62c4ef6fa8903149435c844a3fab9286d212da72b2548f087e37105f4657d5a946afd12b1822ceb99c3b407bb40e21163c1466d116d67c16a2a3a79e5cc9d1f6a1054d6be6731e3cd19abbd9e9b23309f87bfe51a822410a62
e=65537
for r in range(100000):
    t1=(1<<1024)-1+r
    t2,s=gmpy2.iroot(t1**2-4*n,2)
    if s:
        p=(t1+t2)//2
        q=n//p
        d=gmpy2.invert(e,(p-1)*(q-1))
        print(long_to_bytes(pow(c,d,n)))
        break

b'Good job! Here is the flag:\n+-----------------------------------------------------------+\n| zer0pts{F3rm4t,y0ur_m3th0d_n0_l0ng3r_w0rks.y0u_4r3_f1r3d} |\n+-----------------------------------------------------------+'

<think>好的,我现在需要帮助用户解决关于Dify循环实现的问题。首先,我需要明确用户的具体需求。他们提到“dify 循环实现”或“dify 如何处理循环”,但Dify本身可能没有直接称为“循环”的功能,所以需要结合现有文档中的信息来推断可能的解决方案。 根据用户提供的引用内容,Dify工作流中有迭代节点[^1]。这可能类似于编程中的循环结构,用于重复执行某个任务。例如,在处理列表数据或需要多次执行同一操作时,迭代节点可以派上用场。我需要详细解释迭代节点的配置和使用步骤,确保用户能够理解如何设置循环次数或遍历数据集。 另外,用户可能对如何处理循环中的错误或性能问题感兴趣。引用[2]提到在Dify中处理PEM文件的问题,这可能涉及在循环中正确处理数据格式,避免错误积累。需要提醒用户在循环中注意错误处理和资源管理,确保每次迭代的稳定性。 引用[3]中的例子展示了如何结合FastAPI和Selenium进行实时监控并生成GIF,这可能涉及循环截取浏览器内容。虽然Dify本身可能不直接控制这类循环,但可以通过外部脚本或定时任务触发工作流,模拟循环执行。这部分需要说明如何将外部循环机制与Dify结合使用。 接下来,我需要组织回答结构。首先介绍迭代节点的基本概念和配置步骤,然后讨论循环中的数据处理和错误处理,最后补充外部触发循环的方法。同时,生成相关问题以帮助用户进一步探索,比如优化循环性能或处理复杂数据结构。 需要确保回答符合格式要求,使用正确的中文表达,行内公式用$...$,独立公式用$$...$$,但当前问题不涉及数学公式,所以可能不需要使用。同时,引用标识要自然地添加到相关段落末尾,如、[^2]、[^3]。 最后,检查是否有遗漏点,比如Dify的其他循环相关功能或用户可能遇到的常见问题,确保回答全面且易于理解。</think>在Dify中处理循环逻辑主要通过**迭代节点**实现,以下是具体实现方式和应用场景的解析: ### 一、Dify循环实现机制 Dify通过**工作流设计器**中的迭代节点处理循环需求,其核心原理类似编程中的`for循环`。迭代节点可遍历以下数据类型: - 数组列表:`["A","B","C"]` - 字典集合:`{"key1":"value1", "key2":"value2"}` - 数值范围:通过`range()`函数生成序列 配置示例: ```python # 模拟迭代节点的数据输入 input_data = { "dataset": [1,2,3,4,5], "process_logic": "item * 2" # 对每个元素执行乘以2的操作 } ``` ### 二、迭代节点的关键配置步骤 1. **数据源绑定**:将数组/字典类型变量连接到迭代节点的输入端口 2. **循环变量命名**:设定当前元素的变量名(默认为`item`) 3. **子流程设计**:在迭代节点内部构建需要重复执行的逻辑模块 4. **结果聚合**:通过`outputs`收集所有迭代结果,支持数组或对象格式 $$ \text{总耗时} = \sum_{i=1}^{n}(单次迭代时间_i) + 系统开销 $$ ### 三、循环中的特殊处理 1. **错误中断控制**: - 启用`continueOnError`参数可跳过失败迭代 - 通过`try-catch`模块包裹敏感操作 2. **并行优化**: ```python # 伪代码示例 Parallel.forEach(dataset, lambda item: process(item)) ``` 3. **结果过滤**: ```python filtered = filter(lambda x: x%2==0, processed_results) ``` ### 四、应用场景案例 1. **批量文件处理**:遍历存储桶中的文件列表进行格式转换 2. **数据清洗**:对数据库查询结果集进行逐条校验 3. **API轮询**:定时循环调用第三方接口直到满足特定条件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Paintrain

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值