离散数学-代数系统总结6-商代数-积代数

本文深入探讨了数学中的同余关系和积代数概念。同余关系源于同态映射,当自变量在特定运算下产生相同因变量时,它们组成商集中的元素。商集的运算保持封闭性,确保等价组运算后仍为等价组。积代数则是由两个代数系统的序偶构成,新运算规则基于原代数系统规则。例如,两个序偶的运算产生新序偶,其元素分别来自原序偶在各自代数系统中的运算结果。此外,文章还展示了积代数中运算性质的传递性,如可交换性、可结合性和幂等性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

商代数:

我们在同余关系中介绍了  同余关系其实是同态映射的衍生物 就是因变量相同的自变量组合,f(x1)=f(x2)=f(x3)=y1; 则x1,x2,x3,就组成了一个商集中的元素 ,

商集两个不同等价组在新定义的商代数的代数系统代数规则下运算等于这两个等价组中任何一个元素在自身运算规则下的等价组

我们通俗来说就是两个等价组的运算还是一个等价组,由于运算具有封闭性,运算生成的新等价组也在商集中

等价关系是由同态映射函数生成的,所以知道等价关系也能推出同态映射

积代数:

我来解释一下积代数S X T:  两个代数系统,所谓的积代数系统中的元素就是一个 序偶,序偶的第一个元素是S中的一个元素,第二个元素是T中的元素,

我们给出积代数新的代数规则 :

任意两个序偶在新运算的作用下,形成一个新的序偶,新的序偶第一个元素是运算前的两个序偶中s1,s2在S的代数规则下算出的另一个数,第二个元素类似

结合下面例子理解,就明白了

再给出一个例子理解

定理6.13设S1:=<A, 。>,S2.=<B,*>是同类型的代数系统,S=< AXB,●>为S1,和S2的积代数。

(1)如果。和*运算可交换(可结合、幂等),那么●运算也是可交换(可结合、幂等)。

(2)如果e1和e2分别(a1和a2)是 。和*运算的单位元(零元),  那么  <e1,e2>  也是●运算
的单位元。

(3)如果x和y分别是。和*运算的可逆元素,那么<x,y>也是●运算的可逆元素,其逆元是<x^-1,y^-1>。
 

之后可能停更一段时间,因为开学了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大肥羊学校懒羊羊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值