计算机视觉中的监督学习:多模态、数据增强和迁移学习

本文探讨了深度学习领域的几个关键概念,包括监督学习、多模态数据和数据增强技术。文中详细解释了分割(如U-Net和FCN)和分类(如VGG-16和ResNet-50)任务,以及数据增强方法Mixup和Cutmix。此外,还讨论了如何在多模态数据中应用这些技术,并提出了未来的研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

在深度学习领域中,监督学习是一种无监督学习方法,其目标是在给定输入的情况下,利用标记的数据对模型参数进行训练,通过这种方式可以使得模型能够从输入数据中提取出模式或特征,并用于其他任务的预测。通常而言,监督学习依赖于标注数据的数量和质量,特别是当数据量较少或者分布不均衡时,就需要通过构建更复杂的机器学习模型来克服这些问题。然而,由于现实世界中图像、文本、声音等多种形式的数据都处于同一个信息集之中,不同形式的数据之间往往存在着互相联系和交叉,因而很自然地会出现建立统一的监督学习模型的问题。因此,在计算机视觉领域里也有很多基于多模态数据建模的研究。 那么什么是多模态?简单来说,就是指数据的维度大于二维的情况,即图像、视频、文本、语音等不同类型的数据组成了一个整体。多模态数据的处理,就成为许多应用中非常重要的一环。 数据增强(Data augmentation)是深度学习领域的一个重要研究方向,它可以帮助训练网络更好的拟合样本数据,并且可以缓解过拟合的风险。对于图片数据来说,最常见的增强方式包括裁剪、翻转、旋转、缩放、滤波等。对于文本数据来说,常用的增强方式包括字符替换、插入、删除等。那么,对于多模态数据来说,怎样才能有效地进行数据增强呢? 数据迁移学习(Transfer learning)也是另一个具有里程碑意义的研究方向,它可以在多个领域中迁移知识,进而提升模型性能。早期的研究表明,可以将深层神经网络的参数固定住,然后在顶部增加一个输出层,这样就可以对新的类别进行分类。但是,随着网络深度加深后,参数数量越来越多,这就导致迁移学习的效果不佳,因为迁移学习只需要学习新的输出层,而不是整个神经网络。因此,如何结合深度学习、迁移学习、数据增强的方法,是值得研究的方向。 本文将阐述监督学习、多模态、数据增强、数据迁移学习等概念,以及如何用深度学习来解决它们。文章将以计算机视觉中的两个典型案例——分割和分类为主线,分别讨论相关的技术和关键难点。最后,本文还将尝试给出一些未来的研究方向。欢迎大家与我分享您的想法,共同探索这方面的新进展!

2.基本概念术语说明

首先,本文假设读者已经熟悉以下基础概念,如监督学习、深度学习、卷积神经网络、回归、密度估计、优化方法等。如果没有了解过,建议先阅读一些相关的资料。 监督学习 (Supervised Learning):它是机器学习领域的一种方法,是通过已知的输入-输出对来学习如何映射输入到输出。监督学习有助于从数据中发现结构和关系,并对未知数据进行预测。在监督学习中,训练数据集由输入-输出对构成,其中每个输入都有一个对应的输出标记。监督学习的过程就是找到一组模型参数,能够最小化预测误差。 深度学习 (Deep Learning):深度学习是指机器学习系统由多层(多到几十层)自适应单元组成,并且能够学习高阶抽象概念,并且能够自动找寻数据的内在模式。深度学习是一种机器学习技术,它是监督学习的一种延伸,主要关注于让机器从海量数据中提取隐藏的模式,并将其转化为有效的表示。深度学习技术的发展,催生了深度神经网络的出现。 多模态 (Multimodal Data):多模态数据指的是数据的维度大于二维的情况,即图像、视频、文本、语音等不同类型的数据组成了一个整体。

3.核心算法原理和具体操作步骤以及数学公式讲解

分割(Segmentation)

概念

分割(Segmentation)是图像和视频的前置处理过程,其目标是将待识别物体与背景区分开来,并确定其位置。分割任务一般分为三个阶段:实例分割、边界分割和像素级分割。实例分割就是把相同类的实例分离出来;边界分割就是分离物体与背景之间的界线;像素级分割就是根据像素分类,每个像素都是一个实例。

举个例子: 假设有一张图上有两个人,人与背景的划分如下图所示: Alt text

人的边界可以被认为是黑色区域,此时的任务就是对黑色区域进行分类。

U-Net

U-Net 是在分割过程中使用频繁的模型之一。它由两部分组成:编码器(Encoder)和解码器(Decoder)。编码器是卷积网络,用于抽取图像特征;解码器则是一个逆向卷积网络,用于重建空间特征。

具体过程如下图所示: Alt text

  1. 对输入图像进行下采样,得到一个较小的图片。这个时候的大小通常为 $W/2$ 和 $H/2$ ,同时图片通道数保持不变。
  2. 使用编码器对该图片进行特征提取。也就是说,使用卷积神经网络对输入图片进行特征提取,并进行编码。编码后的特征将存储在一个叫做 skip connections 的模块中。
  3. 将编码器输出的特征与解码器的输入连接起来。然后,进行解码。
  4. 在解码器中,首先使用上一步得到的 skip connections 把中间层的特征连接回去。之后,再进行上采样(尺度增大),使得特征恢复到原来的大小。
  5. 最终输出的结果是一个同原始图片大小一样的张量,每一个元素代表对应位置上的像素属于前景还是背景。

FCN

FCN 是 Fully Convolutional Network 的简称。它是一种全卷积网络,其特点是输出的特征图与输入的图像大小一致。

具体过程如下图所示: Alt text

  1. 输入图片经过卷积层提取特征,然后经过全局池化(Global Pooling)得到一个特征向量。
  2. 将这个特征向量反卷积(Deconvolution)得到一个与原始输入尺寸一样的特征图。
  3. 在特征图上使用 1x1 的卷积核得到最终的输出。

分类(Classification)

概念

分类任务的目标是给输入样本分配标签。比如对于图像分类任务,输入的样本就是图片,目标就是将图片分类到指定类别。分类任务中常用的损失函数有交叉熵损失函数、正则化损失函数等。

VGG-16

VGG-16 是卷积神经网络(CNN)的一种,它是一个 16 层的深度网络,因此被称为 VGG-net。它在 ImageNet 比赛中取得了相当好的成绩。

VGG-16 由多个卷积层和池化层堆叠而成,如下图所示: Alt text

  1. 通过五次重复的卷积层和池化层,处理输入图片,得到特征图。
  2. 每个卷积层由多个卷积核组成,每次卷积都会减少图像的宽度和高度,在一定程度上减少计算量。
  3. 每个池化层都会降低特征图的尺寸,但不会减少特征图的深度。
  4. 完成五次卷积后,进入 fully connected layers 。
  5. 在 fully connected layers 中,使用 dropout 防止过拟合,使用 softmax 函数进行分类。

ResNet-50

ResNet-50 是 Residual Neural Networks (ResNets)的一种,它是一个 50 层的深度网络,因此被称为 ResNet。

ResNet 与 VGG 有着类似的结构,不同的是 VGG 所有层都是 3x3 的卷积,ResNet 每个层的卷积核数量都是变化的。ResNet 结构中最主要的特点是采用残差连接(residual connection)来保证梯度消失和梯度爆炸的问题。如下图所示: Alt text

  1. 通过五个阶段的残差块堆叠而成,每个残差块由多个卷积层和 shortcut 连接组成。
  2. 每个残差块中,第一个卷积层的卷积核数是输入的通道数,第二个卷积层的卷积核数是第一个卷积层的输出通道数的两倍。
  3. 在残差块中,使用 BN 和 ReLU 激活函数,加快收敛速度和避免梯度消失。
  4. 使用全局平均池化层(global average pooling)得到每个特征图的均值。
  5. 用 Softmax 函数进行分类。

数据增强(Data Augmentation)

数据增强(Data augmentation)是深度学习领域的一个重要研究方向,它可以帮助训练网络更好的拟合样本数据,并且可以缓解过拟合的风险。对于图片数据来说,最常见的增强方式包括裁剪、翻转、旋转、缩放、滤波等。对于文本数据来说,常用的增强方式包括字符替换、插入、删除等。那么,对于多模态数据来说,怎样才能有效地进行数据增强呢?

方法总览

数据增强方法一般可分为两种:一是基于标签的增强方法,二是基于模型的增强方法。基于标签的增强方法往往更易实现,但是会引入噪声;基于模型的增强方法则更灵活,但是可能会引入不可控的偏差。除此之外,还有基于强度、颜色等进行数据增强的方法。这里,仅介绍两种基于模型的增强方法:

  1. Mixup:Mixup 是一种近似混合训练方法,可以让网络更好的拟合样本数据。它通过对输入进行线性插值的组合,生成新的样本。
  2. Cutmix:Cutmix 是一种遮罩混合训练方法,可以在不破坏目标检测框的情况下,生成新的样本。

Mixup

Mixup 是一种近似混合训练方法,可以让网络更好的拟合样本数据。它通过对输入进行线性插值的组合,生成新的样本。

Mixup 可以看作一种权重共享的策略,从而让不同类别样本间的关系更紧密。

具体过程如下图所示: Alt text

  1. 从训练集中随机选择两幅图像,并用线性插值的方式对它们进行融合。
  2. 按照 0.5 的概率对图像进行 Mixup 操作,按照 0.5 的概率直接使用图像本身。
  3. 对融合后的图像进行分类,计算损失。
  4. 根据权重,更新模型参数。

Cutmix

Cutmix 是一种遮罩混合训练方法,可以在不破坏目标检测框的情况下,生成新的样本。

Cutmix 与 Mixup 不同之处在于,它通过对输入图像进行随机裁剪的方式生成新的样本。

具体过程如下图所示: Alt text

  1. 从训练集中随机选择一幅图像,并将它裁剪成任意形状的矩形区域。
  2. 从同一图像中随机选择一幅裁剪出的图像,将其裁剪成任意形状的矩形区域。
  3. 根据两个矩形区域,按照一定比例进行合并。
  4. 对合并后的图像进行分类,计算损失。
  5. 根据权重,更新模型参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智能应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值