二叉树经典算法

一、二叉树遍历

二叉树节点定义

 struct TreeNode {
     int val;
     TreeNode *left;
     TreeNode *right;
     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 };

1、前序遍历

①递归方法

class Solution {
public:
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> S;
        if(root == nullptr) return S;
        preOrder(root,S);
        return S;
    }
    void preOrder(TreeNode* root,vector<int> &S){
        if(root != nullptr){
            S.push_back(root->val);
            preOrder(root->left,S);
            preOrder(root->right,S);
        }
        
    }
};

②迭代方法

使用stack容器:栈

class Solution {
public:
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> ret;
        if(root == nullptr) return ret;
        stack<TreeNode*> s; //创建栈
        s.push(root);  //将根节点加入栈
        while(!s.empty()){
            TreeNode* temp = s.top(); //用一个临时变量存储栈顶元素
            s.pop(); //出栈
            ret.push_back(temp->val);           
            if(temp->right) s.push(temp->right);          
            if(temp->left) s.push(temp->left);          
        }
        return ret; 
    }
};

2、中序遍历

递归写法只需要改变顺序

下面为迭代写法

class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> ret;
        stack<TreeNode*> s;
        while(root != nullptr || !s.empty()){
            while(root){
                s.push(root);
                root = root->left;
            }
            if(!s.empty()){
                root = s.top();
                ret.push_back(root->val);
                s.pop(); 
                root = root->right;
            }
        }
        return ret;  
    }
};

3、后序遍历

递归写法只需要改变顺序

下面为迭代写法

思路:前序遍历,先走右边,得到的结果再反转即为后序遍历。

class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) {
        vector<int> ret;
        if(root == nullptr) return ret;
        stack<TreeNode*> s;
        s.push(root);
        while(!s.empty()){
            TreeNode* temp = s.top();
            s.pop();
            ret.push_back(temp->val);           
            if(temp->left) s.push(temp->left); 
            if(temp->right) s.push(temp->right);          

        }
        for(int i = 0;i<ret.size()/2;i++){
            int temp = ret[i];
            ret[i] = ret[ret.size() - i -1];
            ret[ret.size() - i -1] = temp;
        }
        return ret; 
    }
};

4、层序遍历

使用队列容器queue

class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        vector<vector<int>> ret;
        if(root == nullptr) return ret;
        queue<TreeNode*> q;
        q.push(root);
        while(!q.empty()){
            int size = q.size();
            ret.push_back(vector<int> ());
            for(int i = 0;i<size ;i++){
                ret.back().push_back(q.front()->val);
                if(q.front()->left) q.push(q.front()->left);
                if(q.front()->right) q.push(q.front()->right);
                q.pop();
            }
        }
        return ret;
    }
};

二、递归问题

1、二叉树最大深度

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

思路:最大深度=左子树最大深度和右子树最大深度+1;

class Solution {
public:
    int maxDepth(TreeNode* root) {
        if(root == nullptr) return 0;
        int MaxLeftDepth=0;
        int MaxRightDepth=0;
        if(root->left) MaxLeftDepth = maxDepth(root->left);
        if(root->right) MaxRightDepth = maxDepth(root->right);
        return MaxLeftDepth >= MaxRightDepth ? MaxLeftDepth+1 : MaxRightDepth+1;
    }
};

 2、判断轴对称二叉树

class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        return isEqual(root->left,root->right);
    }
    bool isEqual(TreeNode* t1,TreeNode* t2){
        if(t1 == nullptr && t2 == nullptr) return true;
        //if(t1->right == nullptr && t2->left != nullptr) return false;
        if(t1 == nullptr || t2 == nullptr) return false;
        return (t1->val == t2->val) && isEqual(t1->left, t2->right) && isEqual(t1->right, t2->left);
    }
};

3、路径总和

给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。

叶子节点 是指没有子节点的节点。

 思路:递归,从上往下遍历,然后targetSum减去当前节点的val

终止条件:如果遍历到空节点返回false,如果遍历到叶子节点,则判断总和是否为0

class Solution {
public:
    bool hasPathSum(TreeNode* root, int targetSum) {
        if(root == nullptr) return false;
        if(root->left == nullptr && root->right == nullptr) return root->val == targetSum;
        return hasPathSum(root->left,targetSum-root->val) || hasPathSum(root->right,targetSum-root->val);
    }
    
};

4、将有序数组转换为二叉搜索树

class Solution {
public:
    TreeNode* Insert(vector<int>& nums,int left,int right){
        if(right < left) return nullptr;
        int mid = left + (right - left+1)/2; //这里一定要+1,否则mid不对
        TreeNode* root = new TreeNode(nums[mid]);
        root->left = Insert(nums,left,mid-1);
        root->right = Insert(nums,mid+1,right);
        return root;
    }
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        if(nums.size() == 0) return nullptr;
        return Insert(nums,0,nums.size()-1);
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值