Mip-Splatting复现过程记录

Mip-Splatting复现小记

Paper:2311.16493.pdf (arxiv.org)

Code:GitHub - autonomousvision/mip-splatting: Mip-Splatting: Alias-free 3D Gaussian Splatting

步骤

Step1:拉取code
git clone git@github.com:autonomousvision/mip-splatting.git
Step2:数据集

DataSet1:NeRF官方数据集nerf_synthetic文件夹 - Google 云端硬盘(1.56GB)

预处理数据:

python convert_blender_data.py --blender_dir nerf_synthetic/ --out_dir multi-scale
处理后数据输出到Multi-scale文件夹

DataSet2:Mip-NeRF360mip-NeRF 360 (jonbarron.info)

Step3:环境配置
①创建conda环境
conda create -y -n mip-splatting python=3.8
②激活
conda activate mip-splatting
③安装适合自己电脑的pytorch和cuda
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113
conda install cudatoolkit=11.3 -c conda-forge
④安装剩余环境
pip install -r requirements.txt
pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn/
Step4:训练和预测
# single-scale training and single-scale testing on NeRF-synthetic dataset
python scripts/run_nerf_synthetic_stmt.py 
​
# multi-scale training and multi-scale testing on NeRF-synthetic dataset
python scripts/run_nerf_synthetic_mtmt.py 
​
# single-scale training and single-scale testing on the mip-nerf 360 dataset
python scripts/run_mipnerf360.py 
​
# single-scale training and multi-scale testing on the mip-nerf 360 dataset
python scripts/run_mipnerf360_stmt.py 

我直接运行脚本控制台一直等待,无任何输出

检查GPU状态和cuda都可用

直接用下面的命令直接手动训练

训练train.py
set OMP_NUM_THREADS=4
set CUDA_VISIBLE_DEVICES=0,1
python train.py -s multi-scale/lego -m output/lego --eval --white_background --port 6209 --kernel_size 0.1
#输入是预处理的场景multi-scale/lego
#输出是训练过的点云数据output/lego
​
渲染render.py
python render.py -m {output_dir}/{scene} -r {scale} --data_device cpu --skip_train
​
评估指标metrics.py
python metrics.py -m {output_dir}/{scene}

训练过程:

评估过程:

输出至output文件夹

3D 平滑滤波器融合到高斯参数

python create_fused_ply.py -m {model_dir}/{scene} --output_ply fused/{scene}_fused.ply"

viewer:Mip-Splatting Viewer Examples (niujinshuchong.github.io)(google打开)

上传ply文件即可渲染

渲染结果

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值