Gaussian Splatting复现过程

本文介绍了如何利用3D高斯表示法、交错优化和可见性感知渲染算法,实现在1080p分辨率下高质量的实时渲染,以满足竞争性的训练时间并达到先进的视觉效果。文章详细说明了所需的硬件和软件环境,以及数据集的准备步骤和训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:三个关键要素,使我们能够在保持有竞争力的训练时间的同时实现最先进的视觉质量,重要的是允许在 1080p 分辨率下进行高质量的实时(≥ 30 fps)新颖视图合成。首先,从相机校准过程中产生的稀疏点开始,我们用3D高斯来表示场景,保留了连续体积辐射场的理想属性,用于场景优化,同时避免了在空白空间中不必要的计算;其次,我们对三维高斯进行交错优化/密度控制,特别是优化各向异性协方差以实现场景的准确表示;第三,我们开发了一种快速的可见性感知渲染算法,该算法支持各向异性展开,既能加速训练,又能实现实时渲染。

project:3D Gaussian Splatting for Real-Time Radiance Field Rendering code:https://github.com/graphdeco-inria/gaussian-splatting paper:https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_high.pdf display:www.youtube.comwatchv=UXtuigy_wYc

guide:3D Gaussian Splatting入门指南 - 哔哩哔哩 (bilibili.com)

guide:GitHub - yangqinhui0423/gaussian-splatting-Windows

part1环境要求

1.硬件要求

支持CUDA的24G VARM的GPU(4060/3060也可以!!!)

2.软件要求

CUDA:11.8(建议) torch2.0.0+cu118
//cuda版本
nvcc --version 
    
//创建conda环境
conda create -n gaussion_splatting python=3.9
​
conda activate gaussion_splatting
​
pip install torch==2.0.0+cu118 -f https://download.pytorch.org/whl/torch_stable.html
​
//检测torch
进入python
    >>> import torch
    >>> print(torch.__version__)
​
pip install plyfile tqdm 
pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn
git-windows

Git:Git - 下载 (git-scm.com)

Visual Studio 2019

Visual Studio 较旧的下载 - 2019、2017、2015 和以前的版本 (microsoft.com)

确保安装 Desktop Development with C++(环境变量)

COLMAP Releases · colmap/colmap (github.com)(环境变量)

ImageMagik ImageMagick – Download

FFMPEG ImageMagick – Download(环境变量)

part2数据集准备

ffmpeg分解数据

ffmpeg -i {video} -qscale:v 1 -qmin 1 -vf fps={fps} {output}%4d.jpg
//{video}---视频的路径
//{fps}---fps
//{output}---输出路径

colmap位姿计算

colmap指令:
python convert.py -s <location> [--resize]
python convert.py -s data/ocean

文件格式

gaussian-splatting源代码

---data

---scene_name--colmap格式的数据集

--output训练的模型

命令

//训练
train指令:
python train.py -s data/ocean
//GUI
cd viewers/bin/sibr_gaussian_app.exe -m <训练好的点云路径trained model>
<think>好的,用户想寻找与3D高斯点绘技术相关的招聘信息。首先,我需要明确3D Gaussian Splatting的具体应用领域和技术特点,这样才能知道哪些行业或公司可能招聘相关人才。 根据提供的引用资料,3D Gaussian Splatting在SLAM(同步定位与地图构建)和自动驾驶中有应用,比如Gaussian-SLAM项目实现了高真实感的密集SLAM[^1]。此外,该技术也用于三维显式几何表达,与传统的三角网格相比,能避免维度爆炸问题,适合需要高效渲染的场景,如游戏和虚拟现实[^3]。还有复现该技术需要安装FFmpeg等工具,可能涉及计算机图形学开发[^4]。 接下来,我应该考虑用户可能的背景。用户可能具备计算机图形学、计算机视觉或相关领域的知识,正在寻找职位。他们可能需要具体的招聘平台、公司或技能建议。用户可能没有明确说出的是,他们想了解如何提升自己的竞争力以申请这些职位,或者哪些公司正在积极采用这项技术。 然后,需要生成相关问题,帮助用户进一步探索。比如,技术应用领域、所需技能、招聘平台、公司类型以及如何提升竞争力。这些问题应该覆盖用户可能关心的各个方面,而不仅仅是直接回答招聘信息。 最后,确保回答结构清晰,引用正确,并且使用正确的中文和LaTeX格式。比如,提到均值$\mu_x, \mu_y, \mu_z$和标准差$\sigma$时使用行内公式[^2],保持专业性的同时易于理解。</think>### 关于3D高斯点绘技术(3D Gaussian Splatting)的招聘信息与建议 #### 技术应用与行业需求 3D高斯点绘技术(3D Gaussian Splatting)是一种基于概率分布的三维数据表达与渲染方法,其核心是通过高斯分布(如均值$\mu_x, \mu_y, \mu_z$和标准差$\sigma$)描述三维空间中的数据分布。相比传统的三角网格,它能更高效地处理密集数据渲染,并避免维度爆炸问题,因此在以下领域有广泛应用: 1. **SLAM与自动驾驶**:用于高真实感地图构建(如Gaussian-SLAM项目)[^1]。 2. **游戏与虚拟现实**:替代传统三角网格,提升渲染效率与视觉效果[^3]。 3. **计算机图形学开发**:涉及复现与优化技术(如依赖FFmpeg等工具链)。 #### 招聘信息获取渠道 1. **科技公司官网**: - **自动驾驶领域**:Waymo、Cruise、特斯拉等公司的计算机视觉/三维重建相关岗位。 - **游戏与VR/AR领域**:Unity、Epic Games(Unreal Engine)、Meta(Reality Labs)等。 - **图形学工具开发**:NVIDIA(Omniverse)、Autodesk等。 2. **专业招聘平台**: - **LinkedIn**:搜索关键词“3D Gaussian Splatting”“Point-Based Rendering”“Neural Rendering”。 - **Glassdoor/Indeed**:关注“Computer Vision Engineer”“3D Graphics Researcher”等职位。 - **学术与工业界会议**:SIGGRAPH、CVPR等会议的招聘板块。 3. **学术界与开源社区**: - 参与开源项目(如3D Gaussian Splatting复现)可接触相关团队。 - 高校实验室(如计算机图形学/机器人方向)可能招聘研究人员。 #### 技能要求(典型岗位) - **核心技术**:熟悉3D高斯点绘原理、概率模型优化、实时渲染算法。 - **编程能力**:C++/Python、CUDA/OpenGL、PyTorch/TensorFlow。 - **工具链**:FFmpeg、点云处理库(Open3D、PCL)。 - **加分项**:SLAM/自动驾驶项目经验、SIGGRAPH/CVPR论文。 #### 示例岗位(虚构) ```plaintext 职位名称:3D渲染算法工程师 公司:某自动驾驶科技公司 要求: 1. 开发基于3D Gaussian Splatting的高效地图渲染系统。 2. 优化高斯分布参数(μ, σ)的实时计算性能[^2]。 3. 与SLAM团队协作,提升稠密地图重建精度[^1]。 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值