CINTA作业3

CINTA作业3

1.设p=23和a=3,使用费尔马小定理计算 a 2019 m o d   p a^{2019}mod\ p a2019mod p

由费尔马小定理得:
3 2019 ≡ 3 22 × 91 × 3 17 ( m o d   23 ) 3^{2019} \equiv3^{22 \times 91}\times3^{17}(mod\ 23) 32019322×91×317(mod 23)
( 3 22 ) 91 ≡ 1 ( m o d   23 ) (3^{22})^{91}\equiv 1(mod\ 23) (322)911(mod 23)
3 2019 ≡ 3 22 × 91 × 3 17 ( m o d   23 ) ≡ 3 17 ( m o d   23 ) 3^{2019} \equiv3^{22 \times 91}\times3^{17}(mod\ 23)\equiv3^{17}(mod\ 23) 32019322×91×317(mod 23)317(mod 23)
3 17 ( m o d   23 ) ≡ 3 14 × 3 3 ( m o d   23 ) 3^{17}(mod\ 23)\equiv3^{14}\times3^{3}(mod\ 23) 317(mod 23)314×33(mod 23)
14=(1110)B
3   m o d   23 = 3 3 2 = 3 × 3   m o d   23 = 9 3\ mod\ 23=3 \\ 3^{2}=3\times 3\ mod\ 23=9 3 mod 23=332=3×3 mod 23=9
3 4 = 9 × 9   m o d   23 = 12 3 8 = 12 × 12   m o d   23 = 6 3^{4}=9\times 9\ mod\ 23=12\\ 3^{8}=12\times 12\ mod\ 23=6 34=9×9 mod 23=1238=12×12 mod 23=6
3 14 = 3 8 × 3 4 × 3 2 ≡ 6 × 12 × 9 ≡ 4 ( m o d   23 ) 3^{14}=3^{8}\times 3^{4}\times 3^{2}\equiv6\times12\times9\equiv4(mod\ 23) 314=38×34×326×12×94(mod 23)
3 3 ≡ 4 ( m o d   23 ) 3 14 × 3 3 ≡ 4 × 4 ≡ 16 ( m o d   23 ) 3 2019 m o d   23 = 16 3^{3}\equiv4(mod\ 23)\\ 3^{14}\times3^{3}\equiv4\times4\equiv16(mod\ 23)\\ 3^{2019}mod\ 23=16 334(mod 23)314×334×416(mod 23)32019mod 23=16

2.使用费尔马小定理求解同余方程 x 50 ≡ 2 ( m o d   17 ) x^{50}\equiv2(mod\ 17) x502(mod 17)

由费尔马小定理得:
( x 16 ) 3 × x 2 ≡ 2 ( m o d   17 ) ( x 16 ) 3 ≡ 1 ( m o d   17 ) x 50 ≡ 1 × x 2 ≡ 2 ( m o d   17 ) x 2 ≡ 2 ( m o d   17 ) (x^{16})^{3}\times x^2\equiv2(mod\ 17)\\ (x^{16})^{3}\equiv1(mod\ 17)\\ x^{50}\equiv1\times x^2\equiv2(mod\ 17)\\ x^2\equiv2(mod\ 17) (x16)3×x22(mod 17)(x16)31(mod 17)x501×x22(mod 17)x22(mod 17)
x 2 − 2 = k × 17 x 2 = 17 k + 2 x = ± 17 k + 2 x^2-2=k\times17\\ x^2=17k+2\\ x=\pm\sqrt{17k+2} x22=k×17x2=17k+2x=±17k+2

5.请证明13整除 2 70 + 3 70 2^{70}+3^{70} 270+370

证明:
由费尔马小定理得:
( 2 12 ) 5 ≡ 2 60 ≡ 1 ( m o d   13 ) ( 3 12 ) 5 ≡ 3 60 ≡ 1 ( m o d   13 ) (2^{12})^{5}\equiv2^{60}\equiv1(mod\ 13)\\ (3^{12})^{5}\equiv3^{60}\equiv1(mod\ 13) (212)52601(mod 13)(312)53601(mod 13)
10=(1010)B
2   m o d   13 = 2 2 2 = 2 × 2   m o d   13 = 4 2 4 = 4 × 4   m o d   13 = 3 2 8 = 3 × 3   m o d   13 = 9 2 10 = 9 × 4 ≡ − 3 ( m o d   13 ) 2\ mod\ 13=2\\ 2^2=2\times2\ mod\ 13=4\\ 2^4=4\times4\ mod\ 13=3\\ 2^8=3\times3\ mod\ 13=9\\ 2^{10}=9\times4\equiv-3(mod\ 13) 2 mod 13=222=2×2 mod 13=424=4×4 mod 13=328=3×3 mod 13=9210=9×43(mod 13)
3   m o d   13 = 3 3 2 = 3 × 3   m o d   13 = 9 3 4 = 9 × 9   m o d   13 = 3 3 8 = 3 × 3   m o d   13 = 9 3 10 = 9 × 9 ≡ 3 ( m o d   13 ) 3\ mod\ 13=3\\ 3^2=3\times3\ mod\ 13=9\\ 3^4=9\times9\ mod\ 13=3\\ 3^8=3\times3\ mod\ 13=9\\ 3^{10}=9\times9\equiv3(mod\ 13) 3 mod 13=332=3×3 mod 13=934=9×9 mod 13=338=3×3 mod 13=9310=9×93(mod 13)
2 70 ≡ − 3 ( m o d   13 ) 3 70 ≡ 3 ( m o d   13 ) 2 70 + 3 70 ≡ − 3 + 3 ( m o d   13 ) 2 70 + 3 70 ≡ 0 ( m o d   13 ) 2^{70}\equiv-3(mod\ 13)\\ 3^{70}\equiv3(mod\ 13)\\ 2^{70}+3^{70}\equiv-3+3(mod\ 13)\\ 2^{70}+3^{70}\equiv0(mod\ 13) 2703(mod 13)3703(mod 13)270+3703+3(mod 13)270+3700(mod 13)
综上所述, 13 整除 2 70 + 3 70 13整除2^{70}+3^{70} 13整除270+370

6.使用欧拉定理计算 2 100000 m o d   55 2^{100000}mod\ 55 2100000mod 55

g c d ( 2 , 55 ) = 1 ϕ ( 55 ) = ϕ ( 5 × 11 ) = 4 × 10 = 40 100000 = 2500 × 40 2 40 ≡ 1 ( m o d   55 ) ( 2 40 ) 2500 ≡ 1 ( m o d   55 ) gcd(2,55)=1\\ \phi(55)=\phi(5\times11)=4\times10=40\\ 100000=2500\times40\\ 2^{40}\equiv1(mod\ 55)\\ (2^{40})^{2500}\equiv1(mod\ 55) gcd(2,55)=1ϕ(55)=ϕ(5×11)=4×10=40100000=2500×402401(mod 55)(240)25001(mod 55)

7.手动计算 7 1000 7^{1000} 71000的最后两个数位等于什么

1000 = 25 × 40 g c d ( 7 , 1000 ) = 1 7 ϕ ( 1000 ) ≡ 1 ( m o d   1000 ) 7 40 × 1 ( m o d   1000 ) ( 7 40 ) 25 ≡ 1 ( m o d   1000 ) 1000=25\times40\\ gcd(7,1000)=1\\ 7^{\phi(1000)}\equiv1(mod\ 1000)\\ 7^{40}\times1(mod\ 1000)\\ (7^{40})^{25}\equiv1(mod\ 1000) 1000=25×40gcd(7,1000)=17ϕ(1000)1(mod 1000)740×1(mod 1000)(740)251(mod 1000)
由此推断 7 1 000 7^1000 71000的最后两个数位应该为01

9.编写Python语言程序完成欧拉Phi函数的计算,即输入正整数n,计算并返回 ϕ ( n ) \phi(n) ϕ(n)

def gcd(a,b):
    if a<b:
        a,b=b,a
    if b==0:
        return a
    else:
        return gcd(b, a%b)

def ePhi(n):
    num = 0
    for i in range (1,n):
        if gcd(n, i) == 1:
            num = num+1
    return num

n = int(input())
print(ePhi(n))

10.设p是素数,计算(p-1)!mod p,并找出规律,写成定理,并给出证明

p = 1    0 ! m o d   1 = 0    ( 1 − 1 ) ! ≡ − 1 ( m o d   1 ) p=1\ \ 0!mod\ 1=0\ \ (1-1)!\equiv-1(mod\ 1) p=1  0!mod 1=0  (11)!1(mod 1)
p = 2    ( 2 − 1 ) ! m o d   2 = 1    ( ( 2 − 1 ) ! ≡ − 1 ( m o d   1 ) p=2\ \ (2-1)!mod\ 2=1\ \ ((2-1)!\equiv-1(mod\ 1) p=2  (21)!mod 2=1  ((21)!1(mod 1)
p = 3    ( 3 − 1 ) ! m o d   3 = 3    ( 3 − 1 ) ! ≡ − 1 ( m o d   1 ) p=3\ \ (3-1)!mod\ 3=3\ \ (3-1)!\equiv-1(mod\ 1) p=3  (31)!mod 3=3  (31)!1(mod 1)
p = 5    ( 5 − 1 ) ! m o d   5 = 4    ( 5 − 1 ) ! ≡ − 1 ( m o d   1 ) p=5\ \ (5-1)!mod\ 5=4\ \ (5-1)!\equiv-1(mod\ 1) p=5  (51)!mod 5=4  (51)!1(mod 1)
p = 7    ( 7 − 1 ) ! m o d   7 = 6 ( 7 − 1 ) ! ≡ − 1 ( m o d   1 ) p=7\ \ (7-1)!mod\ 7=6\\ (7-1)!\equiv-1(mod\ 1) p=7  (71)!mod 7=6(71)!1(mod 1)
……
由上可知 ( p − 1 ) ! ≡ − 1 ( m o d   p ) (p-1)!\equiv-1(mod\ p) (p1)!1(mod p)
p = 7 ( 7 − 1 ) ! = 6 × 5 × 4 × 3 × 2 × 1 ≡ − 1 ( m o d   7 ) p=7\\ (7-1)!=6\times5\times4\times3\times2\times1\equiv-1(mod\ 7) p=7(71)!=6×5×4×3×2×11(mod 7)
6 × 1 ≡ − 1 ( m o d   7 ) 5 × 3 ≡ 1 ( m o d   7 ) 4 × 2 ≡ 1 ( m o d   7 ) 6\times1\equiv-1(mod\ 7)\\ 5\times3\equiv1(mod\ 7)\\ 4\times2\equiv1(mod\ 7) 6×11(mod 7)5×31(mod 7)4×21(mod 7)
p = 5 ( 5 − 1 ) ! = 4 × 3 × 2 × 1 ≡ − 1 ( m o d   5 ) p=5\\ (5-1)!=4\times3\times2\times1\equiv-1(mod\ 5) p=5(51)!=4×3×2×11(mod 5)
4 × 1 ≡ − 1 ( m o d   5 ) 3 × 2 ≡ 1 ( m o d   5 ) 4\times1\equiv-1(mod\ 5)\\ 3\times2\equiv1(mod\ 5 ) 4×11(mod 5)3×21(mod 5)
证明:
当 p = 2 时:有 ( p − 1 ) ! ≡ − 1 ( m o d   p ) 当p=2时:有(p-1)!\equiv-1(mod\ p) p=2时:有(p1)!1(mod p)
所以,当p=2时定理成立
假设p是大于2的素数, ∀ a ∈ [ 1 , p − 1 ] , ∃ a − 1 , 使得 1 ≤ a − 1 ≤ p − 1 且 a a − 1 ≡ 1 ( m o d   p ) \forall a\in[1,p-1],\exist a^{-1},使得1\le a^{-1}\le p-1且aa^{-1}\equiv1(mod\ p) a[1,p1],a1,使得1a1p1aa11(mod p),其中,逆为其本身的数为1和p-1,将剩余的数两两配对并且每组的乘积模p余1.
则有:
2 × 3 × 4 … … ( p − 3 ) × ( p − 2 ) ≡ 1 ( m o d   p ) 2\times3\times4……(p-3) \times (p-2)\equiv1(mod\ p) 2×3×4……(p3)×(p2)1(mod p)
再将此式两边同乘以1和(p-1)得:
( p − 1 ) ! = 1 × 2 × 3 × 4 … … ( p − 3 ) × ( p − 2 ) × ( p − 1 ) ≡ 1 ( m o d   p ) ≡ − 1 ( m o d   p ) (p-1)!=1\times2\times3\times4……(p-3) \times (p-2) \times (p-1)\equiv1(mod\ p) \equiv-1(mod\ p) (p1)!=1×2×3×4……(p3)×(p2)×(p1)1(mod p)1(mod p)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值