
图像处理
文章平均质量分 89
大多是以传统的图像处理方法为主,理论性的研究,代码有手写也有封装好的函数。为我搭建自己的第三方库做准备。
夏天是冰红茶
目前正在考研,今年希望一次上岸
展开
-
图像处理:预览并绘制图像细节
因为最近在搞毕业论文的事情,要做出一下图像细节对比图,所以我这里写了两个脚本,一个用于框选并同时预览图像放大细节,可显示并返回框选图像的坐标,另外一个是输入框选图像的坐标并将放大的细节放置在图像中,效果如下所示,我们这里写了一个图像区域的选择工具,主要是选择好图像路径,框选和文字的颜色,以及放大的倍数,此处放大的倍数仅用于查看,所以不用担心最后的效果。这里需要的是选择图像路径,框选的坐标,也提供放置位置的坐标,放大的系数,线条的颜色,宽度,以及是否绘制箭头。如果你不提供放置的位置也可以,我们提供了一种自原创 2025-05-16 19:38:02 · 1017 阅读 · 0 评论 -
图像处理:修补+斑点检测进行去噪
一种新的图像去噪方式:图像修补+斑点检测的预处理。根据图像的高度和宽度,创建一个与输入图像相同尺寸的全黑图像,用于标记检测到的斑点。这种方法的原理是检测白色噪点位置,生成对应的掩模图,然后使用修补函数,用附近的像素点替代掉噪点,比起滤波处理会让图像变得模糊,使用这种方式让图像更加的平滑。使用图像修复技术,将标记了斑点的全黑图像balck_image与原始图像image相结合,生成修复后的图像dst。处理后的效果很不错了,这里你可以选择调参优化,或者再加一个参数小的滤波处理,原先的图片受到了噪点的污染。原创 2023-09-15 13:11:59 · 473 阅读 · 0 评论 -
图像处理:手写实现图像增广算法(旋转、亮度调整、裁剪与拼接)
图像增广算法在计算机视觉领域扮演着至关重要的角色。随着深度学习的兴起,大规模数据集的需求变得更加迫切,而图像增广算法可以通过对原始图像进行一系列变换,扩充数据集,从而提升模型的泛化能力和鲁棒性。本文将着重介绍图像增广算法中的三个关键方面:图像旋转、图像亮度调整以及图像裁剪与拼接。这些算法不仅能够增加训练数据的多样性,还可以帮助我们解决一些实际问题,例如旋转不变性、光照变化以及物体完整性等。原创 2023-05-16 19:09:00 · 3231 阅读 · 52 评论 -
图像处理:基于cv2.inpaint()图像修补
图像处理:基于cv2.inpaint()图像修补。今天我们将学习如何通过一种“修复”的方法消除旧照片中的小噪音,笔画等。当然,经过我的测试你也可以将其用于削弱混杂了其他的颜色的图像。大多数人家都会有一些旧的的旧化照片,上面有黑点,一些笔触等。你是否曾经想过将其还原?我们不能简单地在绘画工具中擦除它们,因为它将简单地用白色结构代替黑色结构,这是没有用的。在这些情况下,将使用一种称为图像修复的技术。基本思想很简单:用附近的像素替换那些不良区域,使其看起来和邻近的协调。考虑下面显示的图像。原创 2023-05-06 18:29:47 · 6820 阅读 · 17 评论 -
图像处理:Retinex算法
这里将会介绍一种图像增强的算法——Retinex算法。在查找资料的过程中,我发现对于这一部分的讲解并不是很清楚,所以这里我觉得有必要写一篇通俗且清晰的介绍。这里主要介绍三种Retinex算法的变种,它们在原有的Retinex算法的基础上做了进一步的改进和优化。Retinex常用于图像增强的算法,其核心思想是在保留图像细节信息的前提下,调整图像的对比度和亮度。Retinex算法主要有三种不同的实现方式:单尺度Retinex(SSR)、多尺度Retinex(MSR)和多尺度自适应增益Retinex(MSR)。原创 2023-05-03 21:49:03 · 26139 阅读 · 37 评论 -
图像处理:高斯滤波算法
高斯滤波是一种常用的图像处理技术,常用于去噪、平滑和边缘检测等应用中。它是基于高斯函数的概念,由于高斯函数的性质,距离中心像素越远的像素对新值的贡献越小,对图像中的像素进行加权平均处理,使得周围像素的影响比较大,而远离中心像素的影响则较小。因此,高斯滤波可以平滑图像并去除一部分噪声,同时保留图像中的边缘和细节。具体来说,高斯滤波是通过一个矩阵(卷积核)来实现的。这个矩阵的值是由高斯函数计算出来的,高斯函数在中心点处取得最大值,随着距离的增加而逐渐减小。原创 2023-04-25 18:53:26 · 14363 阅读 · 4 评论 -
图像处理:均值滤波算法
在此之前,我曾在此篇中推导过图像处理:推导五种滤波算法(均值、中值、高斯、双边、引导)。这在此基础上,我想更深入地研究和推导这些算法,以便为将来处理图像的项目打下基础。均值滤波是一种简单的图像平滑处理方法,其基本思想是用像素点周围的邻域像素的平均值来代替该像素的值。在图像处理中,均值滤波可以用于去除图像中的噪声,使图像变得更加平滑。它的计算简单易懂,但在滤波过程中可能会导致图像细节的损失。因此,在实际应用中,需要根据具体的情况选择适合的滤波算法。原创 2023-04-23 18:44:05 · 13696 阅读 · 9 评论 -
图像处理:双边滤波算法
双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折中处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。双边滤波器的好处是可以做边缘保存(Edge preserving),一般用高斯滤波去降噪,会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波器之所以能够做到在平滑去噪的同时还能够很好的保存边缘(Edge Preserve),是由于其滤波器的核由两个函数生成:空间域核和值域核。原创 2023-03-26 13:42:22 · 15621 阅读 · 5 评论 -
图像处理:模糊图像判断
本次将会使用一组模糊图像和一组标准图像获得模糊判定区间(a,b),我们知道梯度值越大,图像越清晰,所以当我们进行测试一张图像时,它所返回的梯度值小于a,则可以说明它是一个模糊的图像,当返回的梯度值大于b时,则可以说明它是一个清晰的图像,而当返回的梯度值落在了a与b之间,我们将其也放在模糊图像当中。原创 2022-12-04 20:01:10 · 6612 阅读 · 15 评论 -
图像处理:图像清晰度评价
图像清晰度是用来指导调焦机构找到正焦位置的评价函数。理想的清晰度评价曲线类似于泊松分布,请看下图:p点对应于正焦位置,P1 和P2 为正焦位置焦前和焦后采集到图像的清晰度评价结果。正焦的图像比模糊的离焦图像边缘要更加的锐利清晰,相应的边缘像素灰度值变化大,因而会有更大的梯度值,从数学的角度来看图像,它是二维的离散矩阵,利用梯度函数可获取图像的灰度信息,来判别图像的清晰度,在离散信中梯度表现为差分形式。原创 2022-11-19 16:07:18 · 12307 阅读 · 23 评论 -
图像处理:局部描述子SIFT算法
SIFT,即尺度不变特征变换,一种局部特征描述子,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量。SIFT特征包括兴趣点检测器和描述子。SIFT描述子具有非常强的稳健性,这在很大程度上也是SIFT特征能够成功和流行的主要原因。自从SIFT出现后,许多与他本质上使用相同描述子的方法也相继出现。现在,SIFT描述符常和许多不同的兴趣点检测器相结合,有时甚至在整幅图像上密集使用。SIFT特征对于尺度、旋转和亮度都具有不变性,因此,它可以用于三维视角和噪声的可靠匹配。原创 2022-10-27 20:54:30 · 5700 阅读 · 7 评论 -
图像处理:边缘检测原理
很抱歉,前面推导三种边缘检测算子我不是很满意就发出去了,现在以我的知识储备看他们还是有着很大的问题,我潜下心的找资料,看视频,就是为了将我的基础打牢,所以,我在这一篇当中好好的抠细节,毕竟从实际的应用上来说,这是我的学习笔记,再怎么也不能糊弄自己。原创 2022-10-17 21:03:14 · 5877 阅读 · 6 评论 -
图像处理:推导三种边缘检测算法(Sobel,FFT,FHT)
之前写的推导Canny边缘检测算法得到了大家的认可,我也是第一次拿到了双榜第一的成绩,给了我很大的鼓励。传统的检测算法在工业当中用处也颇多,由于学习的需要,我才在之前推导了Canny边缘检测的算法,它也是我最常用的一种,它的效果确实是较其他几种要好一点。所以这篇的目的是为了,学习其他的几种边缘检测的方法,并与Canny算法进行比较,来评估一下这几种算法实现效果的差异,并得到一个在什么样的条件下,使用哪种算法最好。目录概述Sobel算子FFT算子Numpy中的傅里叶变换OpenCV中的傅里叶变换FHT算子。原创 2022-10-14 19:59:02 · 3986 阅读 · 2 评论 -
图像处理:推导五种滤波算法(均值、中值、高斯、双边、引导)
均值滤波:卷积核越大,图片的失真越明显,图片会更模糊,如果设置核的大小为(1,1),则结果是原始图像。中值滤波:随着核的增大,图片会更加模糊,核必须是大于1的奇数,如3,5,7等,在这cv2.medianBlur(src,ksize)当中,填写核时填写一个数字,如3,5,7,在这里我们要对比均值滤波的用法。它对于椒盐噪声的图片效果最好。高斯滤波:随着核的大小逐渐变大,会让图像更加模糊,核的大小(N,N)必须是大于1的奇数,如3,5,7等,sigma表示的是X方向方差。我们常常在边缘检测中用到它。原创 2022-10-14 01:05:23 · 40443 阅读 · 12 评论 -
图像处理:推导Canny边缘检测算法
Canny算法的历史年代久远,但它却是我目前接触的当中使用的最多的一种,它的好是好在哪里,为什么它在目前的研究当中被广泛使用?如果只停留在表面的调用上,我们并不能厚颜无耻的说我们已经是一个专家了,推导它的底层逻辑,是否能在我们以后的学习中为我们提供一些好的思路呢?我不知道,因为只有试过才知道。原创 2022-10-11 13:42:29 · 11020 阅读 · 35 评论 -
图像处理:实现图形的几何变换
废话不多说,直接上代码。对于初学者来说,图像的几何变换刚刚合适原创 2022-07-26 16:35:12 · 929 阅读 · 0 评论