
每日论文阅读
文章平均质量分 83
小组有段时间让每天阅读,所以记录了一下
夏天是冰红茶
目前正在考研,今年希望一次上岸
展开
-
基于改进细化法的线激光中心提取方法
线激光条纹中心线提取的精度和速度是线激光三维测量技术的关键,针对现有的激光条纹中心提 取方法在速度快和精度高之间的矛盾,提出一种改进细化法的线激光条纹中心线提取方法。首先对图像进行 滤波操作,阈值分割,再基于改进的细化算法,对提取中心进行冗余去除和补线处理,实现了线激光条纹中心快速和高精度的提取。通过实验结果表明,相比灰度重心法,所提方法在精度上提高近 1 倍,相较于 Steger 算法,在运行速度上提高近 15 倍。因此,所提算法具有复杂度低,且具有提取速度和精度高的优点。原创 2023-11-07 21:33:41 · 938 阅读 · 0 评论 -
3D 线激光相机的激光条纹中心提取方法
线激光条纹中心提取是实现线激光相机三维扫描的关键,根据激光三角测量法研制了线激光相机,基于传统 Steger 法对其进行优化并提出一种适用于提取线激光相机光条中心的方法。对图像进行预处理,结合 Canny 算子找出光条边缘,求取光条边缘极值并计算确定ROI区域,利用高斯滤波处理提取后的图像,利用 Hessian 矩阵求取光条中心法线方向,在法线方向进行二阶泰勒展开确定光条中心点,最后对中心点连接并平滑处理,实现中心线精确提取。原创 2023-11-06 19:38:04 · 1736 阅读 · 0 评论 -
复杂物体线结构光中心线提取方法研究
针对复杂物体动态三维测量中条纹图像过曝光、欠曝光以及环境光照干扰引起激光中心线提取速度慢、提取 不准确的问题,提出一种基于深度学习语义分割技术的光条中心线提取方法,该方法使用改进的 UNet++模型进行图像分割,粗提光条中心区域,得到1~2个像素宽度的光条中心线,再利用灰度重心法精确提取亚像素中心。经实验证明,该方法能够有效克服因光条图像曝光不均以及外部干扰噪声带来的不良影响,准确、快速地提取出了复杂物体完整、光滑的亚像素光条中心线,满足工业中动态三维测量的要求。原创 2023-11-05 21:30:55 · 870 阅读 · 0 评论 -
理解训练深度前馈神经网络的难度
这篇论文比较久了,但仍能从里面获得一些收获,论文主要是讨论并研究了不同的非线性激活函数的影响,sigmoid函数它的非零均值会在Hessian中诱发重要的奇异值,很容易导致在隐藏层中达到饱和区域,且也证实了sigmoid激活函数在随机初始化的深度网络并不是很合适。不过却又发现,处于处于饱和的神经元能够自己“逃脱出”饱和状态。这可能是由于训练算法中的一些机制,例如学习率的调整或梯度剪切。此外,论文还讨论了雅可比矩阵的奇异值与训练困难之间的关系。原创 2023-11-03 21:41:29 · 298 阅读 · 0 评论 -
中心线提取的全卷积网络
论文提出了一种将端到端可训练多任务全卷积网络(FCN)与最小路径提取器相结合的中心线提取框架。FCN同时计算中心线距离图和检测分支端点。该方法生成单像素宽的中心线,没有虚假分支。它处理任意树状结构的对象,而不预先假设树的深度或其分岔模式。它对目标物体不同部分的大规模变化和物体分割掩码的微小缺陷也具有鲁棒性。据我们所知,这是第一个基于深度学习的中心线提取方法,可以为复杂的树状结构对象保证单像素宽的中心线。不过论文中说的是FCN,带开源所用的是Unet。原创 2023-11-02 20:35:07 · 587 阅读 · 0 评论 -
小样本分割的新视角,Learning What Not to Segment
目前背景:少样本分割 (FSS) 得到了广泛的发展。以前的大多数工作都在努力通过分类任务衍生的元学习框架来实现泛化。存在问题:但受过训练的模型偏向于预测可见类,从而阻碍了对新范式的认识。论文贡献:本文提出了一个新鲜而直接的见解,以缓解此类问题。具体而言,将额外分支(基础学习器)应用于常规FSS模型(元学习器),以明确识别基类的目标,即不需要细分的区域。然后,将这两个学习器的粗略结果进行了自适应整合,以产生精确的分割预测。原创 2023-11-01 21:37:01 · 319 阅读 · 0 评论 -
动态蛇形卷积管状结构分割
血管和道路等管状结构在各种临床和自然环境中具有极其重要的意义,在这些环境中,精确分割对于下游任务的准确性和效率至关重要。然而,这项任务远非易事,主要是由于它们薄而脆弱的局部结构特征以及复杂多变的整体形态特征带来的挑战。在这篇论文中,重点是利用管状结构的细长和连续属性来增强神经网络三个关键阶段的感知:特征提取、特征融合和损失约束。为此,引入了动态蛇卷积(DSCNet)它包括多视图特征融合策略和连续性拓扑约束损失。原创 2023-10-31 19:55:52 · 1251 阅读 · 0 评论 -
贝叶斯神经网络用于学习曲线的概率预测
面对不同的神经网络结构、超参数和训练协议,通常需要检查生成学习曲线,以快速终止超参数设置不佳的运行,从而大大加快手动超参数优化。通过跨超参数设置的学习曲线的概率模型,可以在自动超参数优化中利用相同的信息。论文研究了贝叶斯神经网络的使用,并通过一个专门的学习曲线层来提高它们的性能。原创 2023-10-30 23:19:33 · 352 阅读 · 0 评论