
搭建pytorch分类模型
文章平均质量分 77
基于pytorch的分类项目实现
夏天是冰红茶
目前正在考研,今年希望一次上岸
展开
-
适合初学者的深度学习项目——基于Pytorch的图像分类系统
一个基于pytorch的分类训练模版此项目提供了一个清晰且高效的基于PyTorch的图像分类训练模板,旨在简化二分类和多分类任务的实现过程。无论是初学者还是有一定经验的开发者,都可以通过这个模板快速上手并构建自己的图像分类模型。二分类和多分类:每个样本只能属于一个类别。二分类是特殊的多分类任务,类别数为2。多分类通过softmax来选择一个最可能的类别。多标签:每个样本可以同时属于多个类别,每个标签的预测是独立的,通常需要sigmoid输出每个标签的概率值。原创 2025-02-18 19:48:52 · 1133 阅读 · 0 评论 -
训练与推理
基于CIFAR-100的Pytorch分类模型训练与推理。原创 2023-11-12 22:27:32 · 410 阅读 · 1 评论 -
网络训练时参数解析的三种方式(yaml、argparser、class属性)
stc = {"log_dir": "存放训练模型.pth的路径","Cuda": "是否使用Cuda,如果没有GPU,可以使用CUP,i.e: Cuda=False","EPOCHS": "训练的轮次,这里默认就跑100轮","batch_size": "批量大小,一般为1,2,4","warm": "控制学习率的'热身'或'预热'过程"实例化类对象:args = parser_args()这种方式相对简洁,易于理解,并且在实例化类对象后可以直接访问这些参数。原创 2023-11-12 17:23:32 · 614 阅读 · 1 评论 -
学习率范围测试(LR Finder)脚本
深度学习中的学习率是模型训练中至关重要的超参数之一。合适的学习率可以加速模型的收敛,提高训练效率,而不恰当的学习率可能导致训练过慢或者无法收敛。为了找到合适的学习率,LR Finder成为了一种强大的工具。学习率范围测试(LR Finder)是一种通过逐渐增加学习率来观察模型在不同学习率下的性能变化的方法。这个过程可以帮助我们找到一个合适的初始学习率,有助于训练过程的稳定和加速。在本文中,我们将深入探讨 LR Finder 的原理、实现和应用,以及如何在实际的分类项目中充分利用这个强大的工具。原创 2023-11-12 15:57:25 · 644 阅读 · 0 评论 -
分类网络搭建示例
本章我们来学习一下如何搭建网络,初始化方法,模型的保存,预训练模型的加载方法。本专栏需要搭建的是对分类性能的测试,所以这里我们只以VGG为例。本章只是对网络的定义进行一个简单的示例,具体的部分我们会在另外一个专栏讲解,这里只是为了让读者了解网络定义的流程。在实际项目中,通常需要更详细的网络结构,包括适当的初始化方法、损失函数的选择、优化器的设置等。如果读者了解掌握了基本的网络定义过程,你可以在本专栏中深入讲解这些方面,以及如何训练和评估模型等内容。原创 2023-11-12 10:24:08 · 1050 阅读 · 0 评论 -
CIFAR-100数据集的加载和预处理教程
dataset类需要继承import torch.utils.data.dataset。dataset的作用是将任意格式的数据,通过读取、预处理或数据增强后以tensor的形式输出。其中任意格式的数据指可能是以文件夹名作为类别的形式、或以txt文件存储图片地址的形式。而输出则指的是经过处理后的一个 batch的tensor格式数据和对应标签。dataset类需要重写的主要有三个函数要完成:__init__函数、__len__函数和__getitem__函数。原创 2023-11-12 00:38:10 · 10962 阅读 · 0 评论 -
深度学习环境搭建入门环境搭建(pytorch版本)
本文介绍了如何从零开始如何搭建深度学习环境的过程。先是介绍了Anaconda的安装,这是一个用于创建Python虚拟环境的工具,使环境管理更加便捷。接下来是PyCharm的安装,这是一个Python集成开发环境,适用于编码和项目管理。同时请关注显卡驱动、Python版本、深度学习框架版本和CuDNN版本之间的兼容性,还介绍了Jupyter Notebook,一种交互式编程环境,用于实验和笔记,并且讨论了在GitHub上创建代码库和协同工作的过程。原创 2023-11-07 23:51:14 · 1589 阅读 · 0 评论