
去雾与加雾
文章平均质量分 94
以前的一个项目部分,后面毕业设计做的去雾
夏天是冰红茶
目前正在考研,今年希望一次上岸
展开
-
图像去雾数据集的下载和预处理操作
目前,因为要做对比实验,收集了一下去雾数据集,并且建立了一个数据集的预处理工程。这是以前我写的一个小仓库,我决定还是把它用起来,下面将展示下载的路径和数据处理的方法。I-HAZEI-HAZE.zip具有真实朦胧和无雾霾室内图像的去雾基准,包含35对朦胧和相应的无雾(地面实况)室内图像。实际下载下来只有30对。这属于是一个小的室内数据集,下载之后,文件夹名为:I-HAZYNTIRE2018,这里我们手动改为I_HAZY_NTIRE_2018。避免出现路径找不到的问题。原创 2025-01-18 14:08:06 · 1796 阅读 · 0 评论 -
深度图的方法实现加雾,Synscapes数据集以及D455相机拍摄为例
在次之前,我们已经做了图像加雾的一些研究,这里我们将从深度图的方法实现加雾展开细讲接下来将要介绍如何使用深度图像生成雾效图像的方法。利用Synscapes数据集,通过读取EXR格式的深度信息,结合摄像机参数和暗通道先验等技术,计算传输图和大气光照强度,并应用朗伯-比尔定律生成雾效图像。文中提供了完整的代码示例,包括从深度图读取数据、计算传输图和大气光、以及生成和保存雾效图像。此外,还介绍了如何使用自制数据集进行处理。该方法适用于自动驾驶数据增强、增强现实和图像去雾等领域,并提供了详细的注释和参考资料,帮助读原创 2024-06-08 20:40:08 · 1901 阅读 · 7 评论 -
D455相机RGB与深度图像对齐,缓解相机无效区域的问题
在使用Intel深度相机D455时,我们经常会遇到深度图中的无效区域。这些无效区域可能由于黑色物体、光滑表面、透明物体以及视差效应等原因引起。为了解决这些问题,我们可以采用图像修复与滤波结合的方法。具体步骤包括创建掩模图、使用插值方法填补缺失值,以及利用OpenCV的inpaint函数进行修复。本文详细介绍了如何根据不同的对齐方式(深度对齐到彩色或彩色对齐到深度)来处理无效区域,并展示了图像修复的实际代码和效果。这些方法能有效提升深度图质量,特别适用于深度加雾任务。原创 2024-06-08 19:30:36 · 3151 阅读 · 2 评论 -
intel深度相机D455的使用
Intel RealSense D455 是RealSense D400系列的一部分,这个系列的设备以其高精度和可靠性而闻名。D455相比于之前的型号(如D415和D435),提供了更远的感知范围和更高的精度。原创 2024-06-01 23:10:52 · 4280 阅读 · 0 评论 -
图像加雾算法的研究与应用
在去雾任务当中,训练和评估去雾算法需要大量的带有雾霾和无雾霾的图像对。由于实际拍摄的带雾霾的图像不易获得并且不可控,因此研究者常常通过加雾(Image Fogging)技术来人工生成含雾图像,以丰富数据集。这不仅有助于生成多样化的训练数据,还能在控制实验中评估去雾算法的性能。本文将探讨图像加雾的基本原理和常用方法,并介绍一些用于图像加雾的具体技术。大气散射是指光线在大气中传播时,由于空气中的微小颗粒和气体分子的散射,使得光线强度随着传播距离的增加而衰减。根据贝尔-朗伯定律(Beer-Lambert Law)原创 2024-05-30 14:02:34 · 2936 阅读 · 0 评论