
基于语义分割的道路裂缝检测
文章平均质量分 85
目前建立的是deeplabv3+
夏天是冰红茶
目前正在考研,今年希望一次上岸
展开
-
Dice系数衡量图像分割中的重叠区域
Dice系数和mIoU是均是语义分割的评价指标,今天这里就着重讲讲Dice系数,顺便提一下Dice Loss,以后有时间区分一下在语义分割中两个常用的损失函数,交叉熵和Dice Loss。原创 2023-09-04 20:35:07 · 1313 阅读 · 0 评论 -
机器视觉中的目标检测精度评价指标
这一篇主要是了解一下我自己项目上的主要技术指标。在目标检测领域中,存在着许多的精度评价指标,需要依据本身的应用场景选择更合适的评价指标。准确度(Accuracy)、精确率(Precision)、召回率(Recall)、IoU(Intersection over Union)。分类精度:比如准确度(Accuracy),精度(Precision),召回率(Recall Rate), PR 曲线,AP,mAP等;定位精度:比如 IoU;运行速度:比如 fps,帧率,一秒处理几张图。原创 2023-03-27 20:51:06 · 1851 阅读 · 0 评论 -
DeepLabV3+:对预测处理的详解
相信大家对于这一部分才是最感兴趣的,能够实实在在的看到效果。这里我们就只需要两个.py文件(deeplab.py、predict_img.py)。deeplab.py的作用是为了创建一个DeeplabV3类,提供一个检测图片的方法,而predict_img.py则是为了单独检测图片的效果。在这里我需要一个defaults字典用来包含我在这个类要使用的变量,而需要把数据类型转换成字典数据再做存储,这时候就需要用到类的内置属性__dict__。由于我想要将图片放在PyQt5设计的ui中,所以要单张单张的显示原创 2023-02-24 07:15:00 · 2030 阅读 · 9 评论 -
虚拟环境的创建以及labelme和labelImg的使用教程
在写作这篇博客时,我本来打算将虚拟环境的创建和标注软件的使用分开讲解。然而,在完成虚拟环境的创建部分后,我发现它的字数似乎有些不足以独立成篇。因此,我决定将这两部分内容放在一起,以便读者更全面地了解这两个主题的关联性。在人工智能的时代,标注数据已经成为了推动技术进步的重要一环。标注软件的使用对于数据标注的效率和准确性有着决定性的影响。我们需要意识到,标注不仅仅是一项重复性的劳动,更是一项需要技能和专业知识的工作。因此,我们需要持续地学习和探索,提高自身的标注能力。原创 2023-02-16 01:22:22 · 4205 阅读 · 2 评论 -
DeepLabV3+:Mobilenetv2的改进以及浅层特征和深层特征的融合
在这里mobilenetv2会从之前写好的模块中得到,但注意的是,我们在这里获得的特征是[-1],也就是最后的1x1卷积不取,只取循环完后的模型。forward当中,会输出两个特征层,一个是浅层特征层,具有浅层的语义信息;另一个是深层特征层,具有深层的语义信息。具有高语义信息的部分先进行上采样,低语义信息的特征层进行1x1卷积,二者进行特征融合,再进行3x3卷积进行特征提取。根据下采样的不同,当downsample_factor=8时,进行3次下采样,对倒数两次,步长为2的。上采样后进行特征融合;原创 2023-02-04 08:00:00 · 6923 阅读 · 4 评论 -
DeepLabV3+:ASPP加强特征提取网络的搭建
ASPP:Atrous Spatial Pyramid Pooling,空洞空间卷积池化金字塔。简单理解就是个至尊版池化层,其目的与普通的池化层一致,尽可能地去提取特征。利用主干特征提取网络,会得到一个浅层特征和一个深层特征,这一篇主要以如何对较深层特征进行加强特征提取,也就是在Encoder中所看到的部分。1x1卷积膨胀率为6的3x3卷积膨胀率为12的3x3卷积膨胀率为18的3x3卷积对输入进去的特征层进行池化。原创 2023-02-03 22:19:33 · 6914 阅读 · 3 评论 -
DeepLabV3+:搭建Mobilenetv2网络
Mobilenetv2网络设计基于Mobilenetv1,它保持了其简单性,不需要任何特殊的操作,同时显著提高了其准确性,实现了移动应用的多图像分类和检测任务的最先进水平。接下来我们将使用pytorch实现它。原创 2023-01-30 11:41:45 · 2527 阅读 · 10 评论