
机器学习
文章平均质量分 90
本篇是为了更加理解AI所写,毕竟机器学习是AI当中的一个大方向,学习machine learning有助于我学习computer version。其中的一些方法与知识也是相通的。
夏天是冰红茶
目前正在考研,今年希望一次上岸
展开
-
K-means 聚类算法分析
算法简述算法简述K-means算法原理我们假定给定数据样本 X ,包含了 n 个对象,其中每一个对象都具有 m 个维度的属性。而 K-means 算法的目标就是将 n 个对象依据对象间的相似性聚集到指定的 k 个类簇中,每个对象属于且仅属于一个其到类簇中心距离最小的类簇中。对于 K-means 算法,首先需要初始化 k 个聚类中心, 然后通过计算每一个对象到每一个聚类中心的欧式距离,如下式所示:这里的表示第i个对象表示第j 个聚类中心表示第i个对象的第t个属性,原创 2023-12-29 23:04:12 · 3903 阅读 · 0 评论 -
Bayes决策:身高与体重特征进行性别分类
同时采用身高与体重数据作为特征,在正态分布假设下估计概率密度,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,考察训练/测试错误情况。在实际的应用中,分类错误率最小并不一定是最好的标准,不同类别的分类错误可能会导致不同的后果。这里要对男性和女性的数据进行分类,先要求解先验概念P(x),这个概率是通过统计得到的,或者依据自身依据经验给出的一个概率值,所以这个值是可以进行设定的,可选择0.5对0.5,0.75对0.25,0.9对0.1这些进行测试。原创 2023-10-26 22:14:00 · 1915 阅读 · 1 评论 -
多分类中混淆矩阵的TP,TN,FN,FP计算
创建混淆矩阵# 寻找GT中为目标的像素索引# 统计像素真实类别t[k]被预测成类别p[k]的个数@property"""计算混淆矩阵的TN, FP, FN, TP"""if n == 2:if n > 2:"""主要在eval的时候使用,你可以调用ravel获得TN, FP, FN, TP, 进行其他指标的计算计算全局预测准确率(混淆矩阵的对角线为预测正确的个数)计算每个类别的准确率计算每个类别预测与真实目标的iou,IoU = TP / (TP + FP + FN)"""原创 2023-09-16 23:25:10 · 7270 阅读 · 1 评论 -
混淆矩阵细致理解
混淆矩阵(Confusion Matrix)是深度学习和机器学习领域中的一个重要工具,用于评估分类模型的性能。它提供了一个清晰的视觉方式来展示模型的预测结果与真实标签之间的关系,尤其在分类任务中,帮助我们了解模型的强项和弱点。模型正确地预测了正类别的样本数量。模型正确地预测了负类别的样本数量。模型错误地将负类别的样本预测为正类别的数量。模型错误地将正类别的样本预测为负类别的数量。你可以选择看我之前写过的这一篇。其实很好理解,比如TP,它就是正确的预测了正确的样本,FP就是错误的预测为了正确的样本。原创 2023-09-16 00:14:58 · 3514 阅读 · 0 评论 -
机器视觉中的目标检测精度评价指标
这一篇主要是了解一下我自己项目上的主要技术指标。在目标检测领域中,存在着许多的精度评价指标,需要依据本身的应用场景选择更合适的评价指标。准确度(Accuracy)、精确率(Precision)、召回率(Recall)、IoU(Intersection over Union)。分类精度:比如准确度(Accuracy),精度(Precision),召回率(Recall Rate), PR 曲线,AP,mAP等;定位精度:比如 IoU;运行速度:比如 fps,帧率,一秒处理几张图。原创 2023-03-27 20:51:06 · 1851 阅读 · 0 评论 -
机器学习算法:支持向量机(SVM)
支持向量机(SVM)是一类按监督学习的方式对数据进行二类分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;支持向量机还包括核技巧,这使它成为实质上的非线性分类器。SVM的学习策略是间隔最大化,可形式化为求解一个凸二次规划问题,也等价于正则化的合页损失函数的最小化问题。线性可分支持向量机、线性支持向量机以及非线性支持向量机。当训练数据可分时,通过硬间隔支持向量机,学习一个线性的分类器,即线性可分支持向量机,又称硬间隔支持向量机;原创 2022-11-10 20:13:13 · 5144 阅读 · 3 评论 -
机器学习中的空间概念
学习SVM时,对于前面的知识点有所遗忘,这里做个笔记。输入空间,输出空间,特征空间,假设空间,欧式空间,希尔伯特空间。原创 2022-10-28 17:08:12 · 2020 阅读 · 0 评论