CINTA 第四次作业

第六章

7.设 G \mathbb{G} G是群,对任意 n ∈ N n\in \N nN, i ∈ [ 0 , n ] i \in [0, n] i[0,n] g i ∈ G g_i \in \mathbb{G} giG。证明 g 0 g 1 ⋯ g n g_0 g_1 \cdots g_n g0g1gn的逆元是 g n − 1 ⋯ g 1 − 1 g 0 − 1 g_n^{-1} \cdots g_1^{-1} g_0^{-1} gn1g11g01

第7题证明
8.证明:任意群 G \mathbb{G} G的两个子群的交集也是群 G \mathbb{G} G的子群。
在这里插入图片描述

10. G \mathbb{G} G是阿贝尔群, H \mathbb{H} H K \mathbb{K} K G \mathbb{G} G的子群。请证明 H K = { h k : h ∈ H , k ∈ K } \mathbb{H} \mathbb{K} = \{hk: h \in \mathbb{H}, k \in \mathbb{K}\} HK={hk:hH,kK}是群 G \mathbb{G} G的子群。
如果 G \mathbb{G} G不是阿贝尔群,结论是否依然成立?

在这里插入图片描述
11. 设 G \mathbb{G} G是阿贝尔群, m m m是任意整数,记 G m = { g m : g ∈ G } \mathbb{G}^m = \{ g^m: g\in \mathbb{G}\} Gm={gm:gG}。请证明 G m \mathbb{G}^m Gm G \mathbb{G} G的一个子群。

在这里插入图片描述

第七章

6.证明:如果群 G \mathbb{G} G没有非平凡子群,则群 G \mathbb{G} G是循环群。
证明: G \mathbb{G} G没有非平凡子群,所以 G \mathbb{G} G只有{e}和 G \mathbb{G} G两个子群,那么很显然,群 G \mathbb{G} G中任意一个非单位元素都可以生成 G \mathbb{G} G,因此 G \mathbb{G} G为循环群。综上,得证。

7.证明循环群 G \mathbb{G} G中任意元素的阶都整除群 G \mathbb{G} G的阶。
在这里插入图片描述

8.编程完成以下工作:给定一个素数 p p p,找出 Z p ∗ \Z_p^* Zp的最小生成元。对于素数 1 < p < 10000 1< p < 10000 1<p<10000,哪一个素数 p p p使得 Z p ∗ \Z_p^* Zp的最小生成元最大?

#include<bits/stdc++.h>
using namespace std;
//线性筛质数
int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉
void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}
LL qmi(LL m, LL k, LL p)
{
    LL res = 1 % p, t = m;
    while (k)
    {
        if (k&1) res = res * t % p;
        t = t * t % p;
        k >>= 1;
    }
    return res;
}
int Get_Mingen(int p){//获得最小生成元
    for(int i=2;i<p;i++){
        int cnt=1;
        int tmp=i;
        while(tmp!=1){
            tmp=qmi(i,++cnt,p);
        }
        if(cnt==(p-1)){
            return i;
        }
    }
    return 0;
}
int main()
{
    int p;
    cin>>p;
    int Minimum_generator=Get_Mingen(p);
    cout<<p<<"的Zp*最小生成元是"<<Minimum_generator<<endl;
    get_primes(10000);
    int maxn=0,prime;
    for(int i=0;i<cnt;i++){
      if(Get_Mingen(primes[i])>maxn){
          prime=primes[i];
          maxn=Get_Mingen(primes[i]);
      }
    }
    cout<<"在1-10000中使Zp*最小生成元最大的素数是"<<prime<<endl;
}

运行结果如下:
在这里插入图片描述
所以5881使Zp*的最小生成元最大,最大的最小生成元的31。

第8章

3.如果 G \mathbb{G} G是群, H \mathbb{H} H是群 G \mathbb{G} G的子群,且 [ G : H ] = 2 \lbrack \mathbb{G} : \mathbb{H}\rbrack =2 [G:H]=2,请证明对任意的 g ∈ G g\in \mathbb{G} gG g H = H g g \mathbb{H} = \mathbb{H}g gH=Hg

证明:因为 [ G : H ] = 2 \lbrack \mathbb{G} : \mathbb{H}\rbrack =2 [G:H]=2,所以 G \mathbb{G} G H \mathbb{H} H划分了两部分,我们设一部分为 H \mathbb{H} H,一部分为 K \mathbb{K} K
g ∈ H g∈\mathbb{H} gH时,则 g − 1 ∈ H g^{-1}∈\mathbb{H} g1H,那么 g H g − 1 g\mathbb{H}g^{-1} gHg1= H \mathbb{H} H。所以 g H g − 1 g g\mathbb{H}g^{-1}g gHg1g= H g \mathbb{H}g Hg
g ∉ H g∉\mathbb{H} g/H时,由于陪集性质,所以 g H ≠ H g\mathbb{H}\neq\mathbb{H} gH=H H g ≠ H \mathbb{H}g\neq\mathbb{H} Hg=H
由于陪集的性质, G \mathbb{G} G被划分成两个部分,那么 g H g\mathbb{H} gH H g \mathbb{H}g Hg只能属于另外一个部分,所以 g H = H g g\mathbb{H}=\mathbb{H}g gH=Hg
综上,证毕!

4.设 G \mathbb{G} G是阶为 p q pq pq的群,其中 p p p q q q是素数。请证明 G \mathbb{G} G的任意真子群是循环群。

证明:p,q是素数,所以pq的因子只有1,p,q,pq。根据拉格朗日定理,则其真子群的阶有1,p,q。
当真子群的阶为1时,即为平凡子群,真子群显然是循环群。
当真子群的阶为p,q时,根据拉格朗日定理的推论,素数阶数的有限群一定是循环群。
综上,证毕!

5.如果群 H \mathbb{H} H是有限群 G \mathbb{G} G的真子群,即存在 g ∈ G g\in \mathbb{G} gG但是 g ∉ H g \not \in \mathbb{H} gH。请证明 ∣ H ∣ ≤ ∣ G ∣   / 2 \vert \mathbb{H} \vert \leq \vert \mathbb{G} \vert \ /2 HG /2
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Showball.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值