1. 构建层次结构
2. 构建判断矩阵
指标i比指标j | 量化值 |
同等重要 | 1 |
稍微重要 | 3 |
重要 | 5 |
较强重要 | 7 |
非常重要 | 9 |
两相邻判断的中间值 | 2、4、6、8 |
倒数 |
3. 求权重(近似法)
(1)列和法(列正规化后平均值法)
对每一列进行归一化(每个数值除以该列的和),将列归一化的判断矩阵按行求平均数。
(2)几何平均法(方根法)
4. 一致性检验
(1)计算最大特征根
(2)一致性指标CI
当=n时,CI=0,此时判断矩阵具有完全一致性。但是一般情况下, >n,越大,矩阵的一致性越差。
维数n越大越容易出现不一致性,需要查找所给同阶矩阵的随机指标RI。
(3)随机指标RI
维数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
RI | 0 | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
检验判断矩阵一致性是采用CI与RI之比,此称为一致性比率CR。
CR >= 0.1,一致性太差,需要调整;
CR < 0.1,通过一致性检验。