高阶玩法:Coze+DeepSeek打造一站式视频制作工作流(建议收藏)

最近在研究使用Coze工作流制作视频,虽然其官方支持的视频插件有限,但合理组合使用,也能覆盖不少我们的应用场景。

比如下面这个账号,其主要分享认知思维的内容。以口播的方式直接阐述认知观点。搭配简洁的背景和深度的解读,总能吸引人停留关注。

小红书主页案例:

那是否可以利用Coze,实现一站式视频生成的工作流呢?

试一下不就知道了?

账号拆解

我们可以直接将账号截图丢给DeepSeek-R1模型,让其先进行深度分析和拆解

参考DeepSeek的分析结果,可以确定制作此类视频的关键信息,为后续工作流搭建理清思路。

信息要素,(风格、标题、作者、极简头像、左右子标题、分段字幕、磁性配音)

细节前置

  • 考虑视频的长度在3~4分钟,控制Coze工作流执行时间避免超时。

  • 视频制作耗时较长,需要异步完成,需找到合适的视频插件。

  • 配音需要沉稳、磁性,需选择合适的音频插件。

工作流分解

  1. 文章内容:大模型生成内容或直接使用用户输入的文章内容。

  2. 文章生成我们可以使用DeepSeek-R1模型,生文质量非常高。

  3. 同样也可以使用Coze内置的免费模型,基本够用。

  4. 字幕拆分:根据标点符号进行断句拆分,避免字幕内容过长。

  5. 批量制作图片:利用画板+批处理节点搭建图片制作流程

  6. 音频制作:利用音频插件,为每句话单独生成音频文件,和图片字幕相匹配

  7. 图片音频转视频:聚合图片和音频文件,

  8. 压缩视频片段生成长视频文件。

以上是这套工作流的细节和核心制作逻辑。

文章预处理+拆分句子

批处理+画板,批量生图

音色选择+生成音频

图片+音频生成视频片段

聚合视频片段

最后聚合视频片段,转换为完整的长视频素材

看下生成视频,满足预期效果。

实测下来,整个视频制作约3~5min,极大提高了创作效率。

此工作流暂未上架,其中涉及的细节及插件使用方式,后续会在学习群中分享。

以上,如果觉得有用还请点赞关注支持。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 使用 CozeDeepSeek 搭建企业级知识库 #### 一、Coze 的最佳实践 在构建基于 Coze 的企业级知识库时,重点在于其模块化的架构设计。Coze 将知识库、工作流以及插件视为独立的资源进行管理[^1]。 对于知识库部分,建议创建结构化的分类体系来存储不同类型的信息。例如,可以设立技术文档区、常见问题解答区等子目录以便于检索和维护。针对工作流方面,则应定义好各个业务流程中的节点及其流转逻辑;而插件则用于扩展平台功能,如集成第三方API服务或开发自定义工具接口。 ```python # Python 示例:模拟 Coze 中的工作流处理函数 def process_workflow(workflow_id, data): workflow_definition = get_workflow_by_id(workflow_id) current_step = find_current_step(workflow_definition['steps']) next_steps = determine_next_steps(current_step, data) execute_actions(next_steps) ``` #### 二、DeepSeek 的应用方法 当利用 DeepSeek 构建企业内部的知识管理系统时,该系统的特色之一就是能够模仿人类思维方式来进行信息查询与分析[^2]。这意味着,在设置过程中要特别注意训练模型理解企业的专有名词和技术术语,并优化算法使其更贴近实际应用场景下的需求特点。 为了达到这一目标,可以通过导入大量高质量的企业资料作为语料库的一部分,让系统学习并掌握这些材料的内容精髓。此外,还可以通过配置特定领域内的推理规则集,使 DeepSeek 不仅能提供精准的答案,更能辅助员工完成复杂的决策支持任务。 ```bash # Bash 脚本示例:批量上传文件至 DeepSeek 数据库 for file in /path/to/documents/*.pdf; do curl -X POST https://api.deepseek.com/v1/upload \ -H "Authorization: Bearer YOUR_API_KEY" \ -F document=@$file done ``` #### 结合两者优势 综合运用上述两种解决方案的优势,可以在同一平台上既享受到 Coze 提供的强大资源整合能力,又可以获得由 DeepSeek 带来的智能化信息服务体验。具体来说: - **统一入口**:建立单一访问点让用户轻松获取所需的各种资源; - **智能推荐**:依据用户行为模式推送可能感兴趣的文章链接或其他相关内容; - **协作编辑**:允许多位成员共同参与文档编写更新活动,提高工作效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值