转行大模型入门公开课推荐!【建议收藏】,清华大学出品,必是精品!

近两年大模型迅速发展迎来了绝对的风口,如今大模型已然成为了引领诸多行业变革的核心力量,吸引着无数人渴望踏入这个充满机遇的领域。本文推荐几门适合转行大模型的几门公开课,从基础理论到前沿技术,再到实际项目应用,全方位覆盖。

1. 清华大学NLP实验室与OpenBMB合作的大模型公开课

课程介绍主页:

https://nlp.csai.tsinghua.edu.cn/summer_class/

课程资源B站地址:

https://www.bilibili.com/video/BV1UG411p7zv/?spm_id_from=333.337.search-card.all.click&vd_source=169060b4cf4ea6149b2f542bae39f4f1

课程内容:从深度学习基础讲起,涵盖大模型基础知识、NLP和大模型基础、神经网络基础、Transformer和PLMs等,帮助学员快速了解大模型的相关理论和实践,并利用所学知识进行前沿问题的探索。

课程优势:由清华大学自然语言处理实验室与OpenBMB合作推出,第一季就已火爆社区,第二季在B站热度也很高,适合零基础学员。

2. Stanford 大学的 CS224n 课程

课程主页:

https://web.stanford.edu/class/cs224n/

课程内容:主要聚焦于自然语言处理领域,包括词向量、神经网络、循环神经网络、长短时记忆网络、注意力机制等基础技术的讲解,以及在机器翻译、情感分析、问答系统等自然语言处理任务中的应用;还会介绍一些前沿的研究成果和方法,如预训练模型在自然语言处理中的应用等。

课程优势:由 Stanford 大学提供,课程内容系统全面,是自然语言处理领域的经典课程,在学术界和工业界都有很高的认可度。课程资料丰富,包括讲义、作业、项目等,有助于学员全面深入地学习自然语言处理和大模型相关知识,提升实践能力。

3. The Annotated Transformer

课程主页:

https://nlp.seas.harvard.edu/2018/04/03/attention.html

课程内容:偏代码实践,以Transformer架构为核心,对其进行详细的注释和讲解,包括Transformer的各个组成部分,如多头注意力机制、前馈神经网络、编码和解码器等的原理和实现细节;通过代码示例和可视化等方式帮助学员理解Transformer在大模型中的关键作用和工作原理。

课程优势:以直观易懂的方式深入剖析了Transformer这一核心架构,对于理解大模型的原理和工作机制至关重要。课程内容简洁明了,适合有一定编程基础和机器学习基础的学员,能够帮助快速掌握Transformer的核心要点,进而更好地理解大模型的技术原理。

4. Hugging Face提供的Transformers库及相关教程

课程主页:

https://huggingface.co/docs/transformers/index

课程内容:介绍Hugging Face的Transformers库的使用方法,包括如何加载预训练模型、进行文本处理、模型微调、生成文本等;还会讲解与Transformers库相关的一些工具和技术,如tokenization、模型压缩、模型评估等;同时会提供一些实际的代码示例和案例,帮助学员快速上手使用Transformers库进行大模型的开发和应用。

课程优势:Hugging Face是大模型领域非常知名的开源社区和平台,其提供的Transformers库被广泛应用于大模型的开发和研究中。通过学习该教程,学员可以快速掌握使用Transformers库进行大模型开发的基本技能,并且可以直接利用社区中的丰富资源和模型,提高开发效率和质量。


AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 成功转型至AI大模型领域的经验和建议 #### 转型案例分析 张先生的经历展示了从传统软件开发向AI领域转变的成功路径[^2]。作为一名拥有多年Java开发经验的工程师,在认识到人工智能的巨大发展潜力之后,张先生选择了转行并最终成为了一名AI研究员。 #### 技能迁移与学习策略 对于希望转入AI大模型行业的专业人士而言,掌握新的编程语言和技术框架至关重要。例如,张先生通过自学掌握了Python这一广泛应用于机器学习项目中的高级语言,并深入理解了深度学习算法如卷积神经网络的工作原理[^3]。这些技能不仅帮助其顺利过渡到了新岗位上,还为其后续的职业发展奠定了坚实基础。 #### 获取优质教育资源的重要性 为了更好地适应快速发展的AI行业环境,获取高质量的学习资料同样不可或缺。丰富的在线课程、书籍以及实践机会能够有效提升个人技术水平和解决问题的能力。对于初学者来说,一套全面覆盖基础知识到实际应用各个层面的学习资源包将是十分宝贵的参考资料[^4]。 #### 社区交流与合作的价值 积极参与开源社区活动或加入特定兴趣小组也是加速成长的有效途径之一。与其他从业者保持密切联系不仅可以及时获得最新资讯和技术动态,还有助于建立人脉关系网,从而为未来职业规划提供更多可能性。 ```python # Python作为AI领域的主要工具, 掌握它是非常重要的. print("Learning Python is crucial for transitioning into the AI field.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值