忘掉 DeepSeek:Qwen 2.5 VL 与 Qwen Max 来了

Qwen 系列又推出了两款令人瞩目的新模型:Qwen 2.5 VLQwen 2.5 Max
如果还停留在“DeepSeek 是最强”那一档,就可能要重新考虑一下,因为这两款模型的实力相当惊艳。


什么是 Qwen 2.5 VL?

先从 Qwen 2.5 VL 说起。它不仅能看图识物,还能理解视频、文本,具备执行电脑操作(agentic)的能力,甚至能做物体检测等。

Qwen 2.5 VL 的核心特性

  1. 高级视觉理解
  • 不只是识别常见物体(鲜花、鸟类等),还能处理复杂视觉元素,如图表、图标、排版布局等。

  • 能理解图像中的空间结构和文字内容,分析文档或图形信息时更得力。

  1. Agentic 能力
  • 可视为一个“视觉代理”,可以进行推理、执行命令、和工具动态交互。

  • 能在电脑或手机等数字设备上自动化操作,无需对特定任务做额外微调。

  1. 长视频理解
  • 能处理超过一小时的视频,并分段提取关键片段。

  • 提供二级精度的事件定位,对总结和信息提取非常有用。

  1. 视觉定位
  • 能识别图像中的物体,并输出精确的边界框或关键点。

  • 还能生成稳定的 JSON 结果用于描述对象属性,方便结构化分析。

  1. 结构化输出
  • 可将扫描文件、发票、表单等转化为可读的数字数据,方便在金融和商务场景下使用。

  • 自动化数据抽取,让处理文档更高效并保持高准确度。

  1. 强大的图像识别
  • 拥有非常广泛的识别能力,从地标、动物、植物到流行文化元素都能辨识。

  • 可以对多类别图像进行识别和分类,适合检索和分类等应用。

  1. 增强的文本与文档解析
  • OCR(光学字符识别)能力更强,多语言、多方向、多场景都能处理。

  • 引入 QwenVL HTML 格式,能从杂志、论文、网页中提取复杂的布局结构。

  1. 强化视频处理
  • 采用动态帧率训练及绝对时间编码,能精准把握时间信息。

  • 在长视频场景下的场景识别、事件提取和摘要能力更上一层楼。

  1. 性能优化
  • Vision Transformer(ViT)中采用 Window Attention,保持精度同时减少计算量。

  • 使用 RMSNorm、SwiGLU 等结构,使得它与 LLM 架构更好对齐。

  1. 多规格模型可选
  • 提供 3B、7B、72B 三种大小,面向不同的硬件与应用需求。

  • 同时在 Hugging Face、ModelScope 开源,基础版与指令版都有。


接下来是 Qwen 2.5 Max

Qwen2.5 Max 则是另一款大杀器。下面简单介绍它的核心功能。

Qwen 2.5 Max 的主要特点

  1. 大规模 MoE(Mixture-of-Experts)模型
  • 采用专家混合架构,实现更高效的扩展性。

  • 预训练超过 20 万亿令牌(tokens),知识覆盖面极广。

  1. 强化的后期训练
  • 使用 SFT(Supervised Fine-Tuning)进行更好的任务定向调优。

  • 通过人类反馈强化学习(RLHF)进一步对齐用户偏好。

  1. 基准表现
  • 在 Arena-Hard、LiveBench、LiveCodeBench、GPQA-Diamond 等测试上超越 DeepSeek V3。

  • 在 MMLU-Pro(大学水平知识测评)上也保持领先或具备竞争力。

image.png

  1. 与主流模型对比
  • 在对话与编程任务上,可与 GPT-4o、Claude-3.5-Sonnet 等商业模型一较高下。

  • 底层模型能力胜过同样开源的 DeepSeek V3 与 Llama-3.1–405B。

  1. API 与 OpenAI 兼容
  • 可以通过阿里云(Alibaba Cloud)访问,并且兼容 OpenAI-API,使用方便。

  • 轻松在 Python 或其他 OpenAI 支持的框架中集成。

总之,看得出来 Qwen 在下一盘大棋!


如何使用 Qwen 2.5 VL 与 Qwen 2.5 Max?

对于想尝鲜或在项目中集成这两款新模型,主要途径大致有:

  • 开源平台:可以到 Hugging Face、ModelScope 等处找到对应仓库,下载基础版(Base)或指令版(Instruct)模型。

  • 云端服务:阿里云已提供官方 API,并支持与 OpenAI 兼容的方式接入。只要你熟悉 Python 或 OpenAI SDK,就能快速上手。

  • 本地部署(硬件允许的话):如果在本地有足够算力,可以下载合适大小的模型自行部署,用于敏感数据处理或离线场景。

从视觉理解到大规模推理,Qwen 2.5 VL 与 Qwen 2.5 Max 都彰显了下一个阶段的模型实力。对需要极致性能或全能 AI 方案的人来说,确实值得一试。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值