【无需服务器】零代码微调Qwen3,非常详细收藏这一篇就够!

 有鼠标就行的

大模型微调喂饭教

一、项目介绍

(一)MS-Swift 简介

嗨喽,今天小编将为大家带来 MS-Swift 的大模型微调教程。ms-swift 是魔搭社区提供的大模型与多模态大模型训练部署框架,现已支持 450 + 大模型与 150 + 多模态大模型的训练(预训练、微调、人类对齐)、推理、评测、量化与部署。模型开发者可以在 ms-swift 框架中一站式完成围绕大模型的各类需求。

(二)MS-Swift 主要能力

1.模型类型

支持 450 + 纯文本大模型、150 + 多模态大模型以及 All-to-All 全模态模型、序列分类模型、Embedding 模型训练到部署全流程。

2.数据集类型

内置 150 + 预训练、微调、人类对齐、多模态等各种类型的数据集,并支持自定义数据集。

3.硬件支持

CPU、RTX 系列、T4/V100、A10/A100/H100、Ascend NPU、MPS 等。

4.轻量训练

支持了 LoRA、QLoRA、DoRA、LoRA+、ReFT、RS-LoRA、LLaMAPro、Adapter、GaLore、Q-Galore、LISA、UnSloth、Liger-Kernel 等轻量微调方式。

5.分布式训练

支持分布式数据并行(DDP)、device_map 简易模型并行、DeepSpeed ZeRO2 ZeRO3、FSDP 等分布式训练技术。

6.量化训练

支持对 BNB、AWQ、GPTQ、AQLM、HQQ、EETQ 量化模型进行训练。

7.RLHF 训练

支持纯文本大模型和多模态大模型的 DPO、GRPO、RM、PPO、KTO、CPO、SimPO、ORPO 等人类对齐训练方法。

8.多模态训练

支持对图像、视频和语音不同模态模型进行训练,支持 VQA、Caption、OCR、Grounding 任务的训练。

9.界面训练

以界面的方式提供训练、推理、评测、量化的能力,完成大模型的全链路。

10.插件化与拓展

支持自定义模型和数据集拓展,支持对 loss、metric、trainer、loss-scale、callback、optimizer 等组件进行自定义。

11.工具箱能力

除了对大模型和多模态大模型的训练支持外,还支持其推理、评测、量化和部署全流程。

12.推理加速

支持 PyTorch、vLLM、LmDeploy 推理加速引擎,并提供 OpenAI 接口,为推理、部署和评测模块提供加速。

13.模型评测

以 EvalScope 作为评测后端,支持 100 + 评测数据集对纯文本和多模态模型进行评测。

14.模型量化

支持AWQ、GPTQ 和BNB 的量化导出,导出的模型支持使用 vLLM/LmDeploy 推理加速,并支持继续训练。

image.png

二、准备环节

(一)访问CloudStudio社区版应用MS-SWIFT

https://cloudstudio.net/a/26719723337732096

image.png

(二)复刻应用并打开预览地址

image.png

(三)配置模型、数据集(均支持在线下载与本地路径)等必要信息

1.模型

为便于演示,本次使用Qwen/Qwen3-4B作为训练模型

2.数据集

为便于演示,本次使用弱智吧作为训练数据集

image.png

三、开始训练

(一)开始训练并监督微调状态

image.png

(二)与微调好的大模型对话

image.png

以上就是小编分享的有关

Qwen3-4B大模型微调案例的全部内容了

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 如何在Linux服务器微调Qwen大语言模型 要在Linux服务器上对Qwen大语言模型进行微调,可以按照以下方法实现。以下是详细的说明: #### 使用QLora进行单GPU微调 如果计划使用QLora技术来微调整合后的Qwen模型,则可以通过执行特定脚本来启动微调过程。具体命令如下所示[^1]: ```bash bash finetune/finetune_qlora_single_gpu.sh -m /root/.cache/modelscope/hub/qwen/Qwen-1_8B-Chat-Int4 -d train.txt ``` 此命令中的`-m`参数指定了预训练模型的位置路径,而`-d`则指向用于微调的自定义数据集文件。 #### 创建Python虚拟环境并激活 为了确保依赖项管理得当,在开始之前建议先创建一个新的Python虚拟环境,并将其激活以便隔离项目所需的库版本和其他设置[^2]: ```bash python -m venv qwenVenv source qwenVenv/bin/activate ``` #### 利用Kiln AI可视化平台简化流程 对于希望减少手动编码工作量的情况,可以选择借助像[Kiln AI](https://www.kiln.ai/)这样的图形化界面工具来进行更直观的操作。它允许用户无需编写任何代码就能完成大部分必要的配置步骤,从而快速进入实际训练阶段[^3]。 #### 合并LoRA权重到基础模型中 一旦完成了上述所有准备工作之后,最后一步就是将通过低秩适应(LoRA)获得的新参数更新回原始的大规模预训练网络之中。这通常涉及编辑某个YAML格式描述文档的内容,随后利用专门设计好的CLI程序接口提交请求给系统处理即可[^4]: ```yaml model_name_or_path: "qwen2-7b" lora_weights_directory: "./output_lora/" merged_model_output_dir: "./merged_qwen2_7b_with_lora/" ... ``` 接着运行下面给出的一条指令就可以正式开始融合动作啦! ```bash llamafactory-cli export qwen2-7b-merge-lora.yaml ``` 以上就是在基于Linux操作系统环境下针对Qwen系列大型自然语言理解与生成框架实施定制化的再训练全过程概述!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值