在Transformer架构(如BERT)中,Dropout
的使用位置和作用确实与原始论文《Attention Is All You Need》中的描述有所不同。以下是对这两种情况的详细解释:
BERT中的Dropout
位置
在BERT模型中,Dropout
主要被用于以下位置:
-
BertLayer
中的Dropout
:-
在每个
BertLayer
中,Dropout
被用于两个地方:-
BertAttention
的输出:在自注意力机制的输出上应用Dropout
,防止注意力权重的过拟合。 -
BertIntermediate
和BertOutput
之间:在前馈网络的输出上应用Dropout
。
-
-
这些
Dropout
层位于LayerNorm
之后。
-
-
顶层
Dropout
:-
在
BertForTokenClassification
中,Dropout
被用于BERT模型的输出和分类器(classifier
)之间。这个Dropout
层同样位于LayerNorm
之后。
-
Transformer论文中的Dropout
位置
在原始的Transformer架构中,Dropout
的使用位置有所不同:
-
Dropout
在LayerNorm
之前:-
根据论文的描述,
Dropout
被应用于每个子层的输出,然后与输入相加,最后进行LayerNorm
。具体来说,公式为:Output = LayerNorm(x + Dropout(Sublayer(x)))
-
这种设计被称为“Pre-Norm”架构,即在进入子层计算之前先进行
LayerNorm
,然后在子层输出上应用Dropout
。
-
-
BERT的实现差异:
-
BERT的实现中,
Dropout
被放置在LayerNorm
之后,这种设计被称为“Post-Norm”架构。虽然这种设计与原始论文有所不同,但它在实际应用中仍然有效。
-
为什么BERT中Dropout
在LayerNorm
之后?
-
设计选择:BERT的实现选择了“Post-Norm”架构,这可能是出于实现简单性和性能优化的考虑。虽然这种设计与原始论文有所不同,但它仍然能够有效地防止过拟合,并且在实际应用中表现出色。
-
实验结果:在BERT的开发过程中,研究人员可能通过实验发现,将
Dropout
放在LayerNorm
之后能够获得更好的训练稳定性和性能。
总之,BERT中Dropout
的位置与原始Transformer论文有所不同,但这种设计选择是基于实际应用中的实验结果和性能优化。