Dropout的使用位置

在Transformer架构(如BERT)中,Dropout的使用位置和作用确实与原始论文《Attention Is All You Need》中的描述有所不同。以下是对这两种情况的详细解释:

BERT中的Dropout位置

在BERT模型中,Dropout主要被用于以下位置:

  1. BertLayer中的Dropout

    • 在每个BertLayer中,Dropout被用于两个地方:

      • BertAttention的输出:在自注意力机制的输出上应用Dropout,防止注意力权重的过拟合。

      • BertIntermediateBertOutput之间:在前馈网络的输出上应用Dropout

    • 这些Dropout层位于LayerNorm之后。

  2. 顶层Dropout

    • BertForTokenClassification中,Dropout被用于BERT模型的输出和分类器(classifier)之间。这个Dropout层同样位于LayerNorm之后。

Transformer论文中的Dropout位置

在原始的Transformer架构中,Dropout的使用位置有所不同:

  1. DropoutLayerNorm之前

    • 根据论文的描述,Dropout被应用于每个子层的输出,然后与输入相加,最后进行LayerNorm。具体来说,公式为:

      Output = LayerNorm(x + Dropout(Sublayer(x)))
    • 这种设计被称为“Pre-Norm”架构,即在进入子层计算之前先进行LayerNorm,然后在子层输出上应用Dropout

  2. BERT的实现差异

    • BERT的实现中,Dropout被放置在LayerNorm之后,这种设计被称为“Post-Norm”架构。虽然这种设计与原始论文有所不同,但它在实际应用中仍然有效。

为什么BERT中DropoutLayerNorm之后?

  • 设计选择:BERT的实现选择了“Post-Norm”架构,这可能是出于实现简单性和性能优化的考虑。虽然这种设计与原始论文有所不同,但它仍然能够有效地防止过拟合,并且在实际应用中表现出色。

  • 实验结果:在BERT的开发过程中,研究人员可能通过实验发现,将Dropout放在LayerNorm之后能够获得更好的训练稳定性和性能。

总之,BERT中Dropout的位置与原始Transformer论文有所不同,但这种设计选择是基于实际应用中的实验结果和性能优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值