ColumnParallelLinear 和 RowParallelLinear

ColumnParallelLinearRowParallelLinear 是两种并行线性层,它们的主要区别在于权重矩阵的分割方式和计算过程。具体来说:

ColumnParallelLinear

  • 权重矩阵分割方式

    • 权重矩阵 W 被按列(column)分割成多个子矩阵,每个子矩阵在并行设备上进行计算。
    • 如果权重矩阵 W 的形状是 (output_dim, input_dim),它会被分割成 P 个子矩阵,每个子矩阵的形状是 (output_dim, input_dim / P)
  • 计算过程:(矩阵块的运算法则与一般矩阵运算相同)

    The linear layer is defined as Y = XA + b. A is parallelized along
        its second dimension as A = [A_1, ..., A_p].

  • 优势

    • 适合输入数据较小但输出维度较大的场景。

RowParallelLinear

  • 权重矩阵分割方式

    • 权重矩阵 W 被按行(row)分割成多个子矩阵,每个子矩阵在并行设备上进行计算。
    • 如果权重矩阵 W 的形状是 (output_dim, input_dim),它会被分割成 P 个子矩阵,每个子矩阵的形状是 (output_dim / P, input_dim)
  • 计算过程:(矩阵块的运算法则与一般矩阵运算相同)

        

The linear layer is defined as Y = XA + b. A is parallelized along
    its first dimension and X along its second dimension as:
               -   -
              | A_1 |
              | .   |
          A = | .   |        X = [X_1, ..., X_p]
              | .   |
              | A_p |
               -   -
  • 优势

    • 适合输出维度较小但输入数据较大的场景。

### MobileViM MoE 架构概述 MobileViM (Mobile Vision Model) 结合了视觉Transformer的强大表达能力MoE(Mixture of Experts, 混合专家)架构的高效性。该结构旨在提高资源受限环境下的性能效率,特别是在移动设备其他边缘计算场景中。 #### 核心思想 MobileViM MoE采用了一种基于稀疏激活的方式,在不牺牲太多精度的情况下显著减少了计算成本内存占用。通过引入多个小型专家网络替代单一的大规模全连接层或卷积核,使得模型可以根据输入特征动态选择最合适的子集来进行处理[^1]。 #### 数学原理推导 对于每一个token作为输入进入MoE模块时,首先经过门控网络决定哪些专家应该被激活以及相应的权重系数;接着这些选定的专家分别对该token执行特定变换操作;最后再由另一个融合单元汇总各个专家的结果形成最终输出表示形式。此过程中仅有一小部分专家参与实际运算,从而实现了高效的参数利用[^3]。 ```python class GatedExperts(nn.Module): def __init__(self, num_experts=8, input_dim=768, output_dim=768): super(GatedExperts, self).__init__() self.gate = nn.Linear(input_dim, num_experts) self.experts = nn.ModuleList([nn.Sequential( nn.Linear(input_dim, output_dim), nn.ReLU(), nn.Linear(output_dim, output_dim)) for _ in range(num_experts)]) def forward(self, x): gate_values = F.softmax(self.gate(x), dim=-1).unsqueeze(-2) # [batch_size, 1, num_experts] expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=-1) # [batch_size, seq_len, hidden_size, num_experts] return torch.matmul(gate_values, expert_outputs).squeeze(-2) ``` #### 训练过程 为了确保不同专家之间的有效协作而不发生冲突,训练期间采用了特殊的损失函数设计与正则化策略。具体来说,除了常规的任务导向目标外,还加入了鼓励均匀分布于各路路径上的样本分配项,防止某些专家过度主导而其他处于闲置状态的现象出现。 #### 应用优势 相比传统密集型神经网络,MobileViM MoE具有如下几点明显好处: - **更高的灵活性**:能够自适应调整内部工作模式以应对多样化的任务需求; - **更优的能量消耗表现**:由于只调用了必要的组件完成预测任务,整体能耗更低; - **更强的数据隐私保护能力**:当部署至终端侧运行时,可以减少对外部服务器依赖程度,进而增强信息安全保障水平[^2]。 #### 技术挑战及解决方案 然而,在实现如此复杂的体系结构时也面临着不少难题,比如如何平衡好速度同质量间的关系、怎样优化跨节点通讯开销等。针对这些问题的研究成果之一便是`ColumnParallelLinear`类的设计——它允许我们将大型矩阵分解成若干个小块并行加载到多台机器上去做局部更新迭代,之后再适时同步全局梯度信息以便继续下一步的学习进程[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值