编程小菜学习之李沐老师动手学深度学习笔记-25VGG

# vgg块

import torch
from torch import nn
from d2l import torch as d2l

def vgg_block(num_convs, in_channels, out_channels):
    layers = []
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
    return nn.Sequential(*layers) # 接受多个层数

# m = vgg_block(4, 3, 12)
# print(m)

conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    for (num_convs, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels

    return nn.Sequential(  *conv_blks,

                           nn.Flatten(),
                           nn.Linear(out_channels*7*7, 4096),
                           nn.ReLU(),
                           nn.Dropout(0.5),

                           nn.Linear(4096, 4096),
                           nn.ReLU(),
                           nn.Dropout(0.5),

                           nn.Linear(4096, 10)
    )

net = vgg(conv_arch)

x = torch.randn((1, 1, 224, 224))
for blk in net:
    x = blk(x)
    print(blk.__class__.__name__, 'output shape:\t', x.shape)

# 由于vgg_11计算量太大,构造一个通道数量较小的
ratio = 4
small_conv_arch = [(pair[0], pair[1]//ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

备注:仅学习使用无需任何打赏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值