计算机论文中的名词解释

基于自举树突状分类器的主动学习应用于医学图像分割

自举(Bootstrapped):在机器学习中,自举是一种通过从已有的数据集中有放回地进行重采样来创建新的训练集的方法。这意味着每个样本在新的训练集中可能出现多次,而有些样本可能被省略。通过自举,我们可以生成多个略有不同的训练集,用于训练多个模型或评估模型的稳定性。
注意:数据集是有放回地!

自举树突状分类器(Bootstrap Aggregated Decision Trees,简称Bagging DT)是一种基于决策树的集成学习算法,它通过构建多棵决策树,再对其预测结果进行集成,以达到提高分类准确率的目的。相比于单棵决策树,Bagging DT的泛化能力更强,对于噪声数据和过拟合等问题也有一定的抵抗能力。

Bagging DT的实现步骤如下:

  1. 从原始数据集中有放回地抽取n个样本(即bootstrap样本),作为训练集。
  2. 使用bootstrap训练集训练一棵决策树。
  3. 重复步骤1和步骤2,构建m棵决策树。
  4. 对于新的测试样本,每棵决策树都进行一次预测,最终结果由所有决策树的预测结果投票决定。

自举 = 有放回地采样创建训练集数据

交互式分割:

交互式分割指的是一种医学图像分割的方法,其中人类操作者可以与系统进行实时的交互和反馈。这种交互式分割方法允许人类操作者在分割过程中提供指导或纠正,以帮助系统更准确地进行图像分割。通过这种方式,人类操作者可以快速干预和调整分割结果,以达到最佳的分割效果。这种交互式的过程可以减少对人类操作者的干预需求,同时提高分割的准确性和效率。

交互式分割 = 人机一起对分割图像进行分析

自举树突分类器:

例一:

假设我们有一个医学图像分割的任务,我们希望将图像中的不同组织或结构进行分类。为了实现这个目标,我们使用了一种称为自举树突分类器(BDC)的基本分类器。
BDC是一个由多个弱树突分类器组成的集合。每个弱树突分类器都是一个相对简单的分类器,可能只能对图像的某个特定方面进行分类,例如边缘检测或纹理分析。
在图像分割过程中,我们将图像输入到BDC中,每个弱树突分类器都会对图像进行分类,并给出一个分类结果。然后,通过多数投票的方式,将所有弱分类器的输出结果进行统计和综合。
举个例子,假设我们有5个弱树突分类器,它们分别对图像进行分类,得到的结果如下:
弱分类器1:分类结果为组织A
弱分类器2:分类结果为组织A
弱分类器3:分类结果为组织B
弱分类器4:分类结果为组织A
弱分类器5:分类结果为组织B
通过多数投票,我们可以看到组织A的分类结果出现了3次,而组织B的分类结果出现了2次。因此,根据多数投票的原则,我们将最终的分类结果确定为组织A。
通过这种方式,BDC利用了多个弱树突分类器的输出结果,通过多数投票的方式综合得到最终的分类结果。这种方法可以提高分类的准确性和鲁棒性,因为它充分利用了多个分类器的集体智慧。

弱树突分类器:

弱树突分类器是一种分类算法,它使用树突连接来建立神经网络模型。相比于传统的神经网络,弱树突分类器的特点是使用较少的树突连接和神经元,以达到简化模型和提高计算效率的目的。

让我们以一个图像分类的例子来详细解释弱树突分类器的应用。

假设我们要构建一个弱树突分类器来识别手写数字图像。我们有一组包含数字0到9的手写数字图像数据集作为训练数据。每个图像由像素值构成,每个像素值表示图像中的一个像素点的亮度。

首先,我们会将每个像素作为输入信号,并为每个像素分配一个树突连接。然后,我们会随机初始化一组神经元,并将它们连接起来。每个神经元通过树突连接接收来自输入图像的像素值。

在训练过程中,我们会使用自举样本来扩充训练数据。自举样本是通过对已有训练数据进行随机变换或扰动来生成的。例如,我们可以对图像进行平移、旋转或缩放等操作,从而生成更多的训练样本。

接下来,我们会在训练数据的自举样本上进行训练。训练过程中,每个神经元会根据输入图像的像素值和树突连接的权重进行计算和激活,然后将输出传递给下一层神经元或输出层。

通过多次迭代训练,弱树突分类器会逐渐调整树突连接的权重,以最小化训练数据上的分类误差。最终,训练完成后的弱树突分类器可以用来对新的手写数字图像进行分类,识别数字0到9。

总结起来,弱树突分类器使用树突连接来建立神经网络模型,通过训练数据的自举样本进行训练,以实现对图像的分类识别。

树突

实际上,“树突”(dendritic)是神经元的一部分,它们是神经元的分支结构,用于接收来自其他神经元的输入信号。树突的形状类似于树枝,因此得名为"树突"。

在神经网络中,树突接收到其他神经元传递过来的电信号,并将这些信号传递给神经元的细胞体,进而影响神经元的激活状态和输出。树突的分支结构使得神经元能够接收来自多个输入源的信号,并对这些信号进行整合和处理。

树突是神经元的分支,它们接收来自其他神经元的输入信号,并将这些信号传递给神经元的细胞体。在图像分类任务中,我们可以将输入图像的像素值看作是神经元的输入信号。

当我们将图像输入到神经网络中时,每个像素值就相当于一个输入信号,而这些输入信号通过树突连接传递给神经元。神经网络中的每个神经元都有多个树突连接,这些连接可以根据输入图像的不同部分来接收不同的信号。

通过对输入图像的树突连接进行加权和处理,神经元可以对不同的特征进行感知和提取。这些特征可能包括边缘、纹理、形状等,它们对于图像分类任务非常重要。

所以,可以说树突是神经元与输入图像之间的桥梁,帮助神经元接收和处理输入信号,从而实现对图像的分类和识别。

医学图像数据的一个切片:

“训练数据的一个切片”指的是医学图像数据的一个二维平面或图层。医学图像通常是由多个连续的二维图层组成的,每个图层代表了不同的深度或位置。

当我们训练分类器时,我们需要使用一些样本数据来训练它。这些样本数据可以是医学图像的一部分,例如一个二维平面或图层。我们选择其中的一个切片作为训练样本,然后使用这个切片来训练分类器。

举个例子来说,想象一下我们有一组腹部CT扫描图像,其中包含了腹动脉瘤患者的血管。每个CT扫描图像由多个连续的二维图层组成,代表了不同深度的断层图像。在这种情况下,训练数据的一个切片就是从这些图层中选择的一个二维图像。

通过使用训练数据的一个切片来训练分类器,我们可以让分类器学习如何准确地识别和分割血栓区域。然后,我们可以将这个训练好的分类器应用于整个体积的图像数据,以自动分割出血栓区域。

图像分割中的最大识别增益:

“最大的识别增益”是指通过选择具有最大不确定性的数据样本来提高分类器性能。在主动学习中,不确定性测度是衡量分类器对数据样本分类的不确定程度的度量。

增益是指通过选择具有最大不确定性的数据样本来获得最大的性能提升。当我们选择具有最大不确定性的样本时,我们可以获得更多有价值的信息,从而帮助分类器更准确地分类新的数据。

举个例子来说,假设我们正在训练一个图像分类器来识别猫和狗的图像。在初始阶段,我们可能只有很少的标记样本数据。如果我们只选择最容易分类的样本进行标记,那么分类器的性能可能会有限。

然而,如果我们使用主动学习方法,选择具有最大不确定性的样本进行标记,那么我们可以获得更大的识别增益。也就是说,我们选择那些分类器对其分类结果最不确定的图像进行标记。通过这种方式,我们可以获取更多关于分类器在不确定性较高的情况下的表现的信息,从而提高分类器的性能。

总之,最大的识别增益是通过选择具有最大不确定性的数据样本来提高分类器性能的方法。这样做可以帮助分类器更好地适应具有不同统计属性的新数据。

主动学习用于医学图像分割的意义:

主动学习的一般方法允许由人工操作员对当前分类器进行最不确定分类的未标记体素的标记进行标记,从而快速交互式分割卷。BDC允许定义一个基于委员会的分类不确定性度量。我们提出了一个实验验证的AAA患者使用提供的地面真相来模拟人类预言。

独立同分布的随机向量:

独立同分布(i.i.d.)是概率统计学中的一个重要概念,用来描述多个随机变量之间的关系。

当多个随机变量是独立同分布的时候,意味着它们是相互独立的,并且每个随机变量都来自于同一个概率分布。

让我们通过一个例子来详细解释独立同分布的概念。假设我们有一个骰子和一组投掷骰子的实验数据。每次投掷骰子,我们记录下来骰子的点数。

现在,我们进行了10次投掷,得到了以下的数据:3, 5, 2, 6, 1, 4, 2, 6, 3, 5。

我们可以将这组数据表示为随机变量序列:X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀。

这里,每个随机变量Xᵢ表示第i次投掷得到的骰子点数。在这个例子中,我们有10个随机变量。

这组数据中的随机变量是独立同分布的,因为它们是相互独立的,并且它们都来自于同一个骰子的概率分布。每次投掷骰子都是相互独立的,而且每次投掷都有相同的概率分布(在这里是均匀分布)。

这意味着我们可以对每个随机变量进行单独的概率分析,而不需要考虑其他投掷的结果。例如,我们可以计算每个随机变量的期望值、方差、概率分布等。

总之,独立同分布的随机向量意味着多个随机变量是相互独立的,并且它们都来自于同一个概率分布。这个概念在概率统计学中经常被使用,用来简化分析和建模过程。

希望这个例子能帮助你更好地理解独立同分布的概念。

评估模型性能的交差验证方案:

交叉验证的基本思想是将数据集划分为训练集和验证集,然后反复进行训练和验证。具体来说,交叉验证将数据集划分为k个相等大小的子集,其中k-1个子集用作训练集,剩下的1个子集用作验证集。然后,使用k-1个子集训练模型,并将模型应用于剩下的1个子集进行验证。这个过程会重复k次,每次用不同的子集作为验证集。最后,将k次验证的结果综合起来得到最终的评估结果。

在论文中,针对BDC的训练的交叉验证方案可能是为了评估BDC分类器的性能,并选择最佳的超参数或调整模型的配置。通过使用交叉验证,可以更准确地估计BDC在未见过的数据上的分类性能,并避免过拟合或欠拟合的问题。

例如,假设我们有一个包含100个样本的数据集。我们可以选择将数据集分为5个子集,每个子集包含20个样本。然后,我们可以进行5折交叉验证,将每个子集轮流作为验证集,其余4个子集作为训练集。这样,我们可以获得5个验证结果,然后综合这些结果来评估BDC分类器的性能。

交叉验证可以提供更准确的性能评估,因为它利用了整个数据集进行训练和验证,并减少了对特定数据划分的依赖。

训练池:

"训练池"是指用于训练机器学习模型的数据集合。在医学图像分割任务中,训练池是指已经被标记或注释的医学图像样本的集合。这些样本通常由专业医生或研究人员进行标注,以指示图像中感兴趣的区域。

在传统的训练过程中,模型会从整个训练池中随机选择样本进行训练。然而,由于医学图像数据的复杂性和多样性,训练池中的样本可能存在各种不确定性。这些不确定性可能是由于图像质量、标注误差、医生之间的主观差异等原因引起的。

论文中提到的"减少训练池内的不确定性"是指通过采用主动学习方法来减少训练池中的不确定性。主动学习是一种机器学习方法,它通过选择最具信息量的样本来主动引导模型的训练。通过使用主动学习,研究人员可以选择那些对于模型来说最有挑战性、最能提供新信息的样本进行标注,从而提高模型在医学图像分割任务中的性能。

样本的不确定性:

当论文中提到样本存在"不确定性"时,它指的是在训练池中的样本可能具有以下几种不确定的特征或情况:

图像质量不确定性:医学图像可能受到多种因素的影响,如噪声、模糊、伪影等,这些因素可能导致图像质量下降。因此,训练池中的样本可能包含质量较低的图像,其图像内容可能不够清晰或准确。

标注误差不确定性:医学图像的标注通常需要由专业医生或研究人员进行,但不同的人可能会有不同的解读或主观判断,这可能导致标注误差。因此,训练池中的样本可能包含有标注误差的图像,其标注结果可能不完全准确或一致。

医生之间的主观差异:不同的医生或研究人员可能对于医学图像中感兴趣的区域有不同的看法或判断,这可能导致标注结果的主观差异。因此,训练池中的样本可能存在医生之间的主观差异,这可能会影响模型的训练和性能。

这些不确定性可能会对训练模型产生负面影响,导致模型在医学图像分割任务中表现不佳。因此,论文提出了使用主动学习来减少训练池中的不确定性,通过选择那些对模型来说最有挑战性和信息量最大的样本进行标注,来提高模型的性能和鲁棒性。

海马体数据集:

海马体(Hippocampus)是大脑中的一个重要结构,位于颞叶内侧,被认为在记忆和空间导航等认知功能中起着重要作用。海马体对于学习和记忆的形成、空间定位和导航等方面具有关键性的功能。在医学影像领域,海马体的MRI扫描被广泛应用于研究海马体的结构和功能,以及与认知功能和神经精神疾病之间的关联。

MRI 扫描:

MRI(Magnetic Resonance Imaging)是一种医学影像技术,利用强磁场和无害的无线电波来生成详细的人体内部结构图像。MRI扫描利用人体组织中的水分子的特性,通过对水分子进行定位和成像,来获得高分辨率的解剖结构图像。MRI扫描不使用任何放射性物质,对人体没有明显的副作用,因此被广泛应用于医学诊断和研究。

胰腺和肿瘤的CT扫描

CT(Computed Tomography)扫描是一种医学影像技术,也被称为X射线计算机断层扫描。CT扫描使用X射线和计算机技术来生成人体内部的断层图像。通过旋转式的X射线源和探测器阵列,CT扫描可以获得多个切片图像,这些图像可以提供关于人体内部组织和器官的详细信息。CT扫描在医学诊断中广泛应用,特别是对于检测和评估肿瘤、创伤和骨骼结构等方面具有重要作用。

委员会与联合优化:

"委员会"是指由多个模型或算法组成的集合。每个模型都是一个独立的学习器,可以使用不同的算法或参数配置。这些模型通过共同决策或投票来达成一致意见。

在主动学习的上下文中,使用委员会是一种常见的策略,旨在提高模型的性能和鲁棒性。委员会中的每个成员模型都有自己的优势和弱点,通过将它们组合在一起,可以利用各个模型之间的互补性,从而提高整体的学习效果。

在论文中提到的主动学习方法中,委员会查询是指在每一轮主动学习中,从委员会中选择一个或多个模型来提供对于标注最有挑战性的样本的预测结果。这些样本通常是那些当前模型在分类或分割任务中最不确定或有争议的样本。

联合优化器是用于委员会的一种优化方法,它的目标是通过共同优化委员会中的所有模型,使它们能够更好地协同工作并取得更好的性能。通过联合优化器,委员会中的每个模型都可以通过学习和调整自己的参数,以最大程度地提高整个委员会的性能。

总而言之,委员会是由多个模型组成的集合,用于在主动学习中进行样本查询和决策。通过利用不同模型之间的互补性和共同优化,委员会可以提高模型的性能和鲁棒性。

深度学习:

深度学习是一种机器学习的分支,它模仿人类大脑的神经网络结构,通过多层次的神经网络来学习和理解数据。深度学习的核心思想是通过多层次的非线性变换来提取数据的高级特征,从而实现对复杂模式和关系的学习。

深度学习的关键组成部分是神经网络,它由许多称为神经元的单元组成,这些神经元通过连接权重相互连接。每个神经元接收来自前一层神经元的输入,并通过激活函数对这些输入进行加权求和,然后将结果传递给下一层神经元。通过多层次的神经网络,深度学习模型可以学习到更加抽象和高级的特征表示。

深度学习在许多领域取得了重大突破,如计算机视觉、自然语言处理和语音识别等。它可以通过大规模的数据集和强大的计算能力来训练复杂的模型,从而实现高精度的预测和决策。深度学习的应用包括图像分类、目标检测、机器翻译、语音合成等。

总之,深度学习是一种基于神经网络的机器学习方法,通过多层次的非线性变换来学习和理解数据,从而实现对复杂模式和关系的学习。它在各个领域都有广泛的应用,并且在人工智能的发展中起到了重要的推动作用。

消融实验

消融实验是指在机器学习或深度学习中,通过逐步去除模型中的某些组件或功能,来探究这些组件或功能对模型性能的影响。消融实验通常用于研究模型的鲁棒性、泛化能力、可解释性等方面,以及验证某些假设或理论。在消融实验中,可以通过去除某些层、模块、特征或其他组件,来比较模型在有无这些组件的情况下的性能差异,从而得出结论。消融实验是一种常用的研究方法,可以帮助研究人员更好地理解模型的工作原理,从而指导模型的设计和优化。

主动学习:

最近的一项规定是使用目标数据选择技术来在有限数据量下提高深度学习网络的性能。这些技术通常是指机器学习的一个概念,通常被称为主动学习。

主动学习,结合深度学习,允许开发一个框架,其中深度网络架构与经典的数据点选择技术相结合(图。1).对模型的主动选择数据有望导致更快的收敛,以更少的数据提高性能,并提高鲁棒性,因为它有针对性地选择了可作为异常值或硬例子来描述的数据点。我们的方法旨在更有效地使用已经标记过的图像。这是通过使用主动学习来增加数据训练池中不确定情况的频率来降低整体模型的不确定性来实现的。在增加不确定数据点的频率的同时,我们还建议利用训练池和未标记数据池之间的互信息,对训练池的数据进行正则化,以保证足够多样的训练集。

互信息:

当论文中提到"互信息"时,它指的是一种用于衡量两个变量之间依赖关系的统计量。互信息可以用来衡量两个变量之间的相关性或共享信息的量。在主动学习中,互信息通常被用来评估模型对于未标记样本的预测不确定性与已标记样本的标签之间的关联程度。通过选择那些与已标记样本相关性较高的未标记样本,可以使模型获得更多有信息量的样本进行标注,从而提高模型的性能。

正则化:

正则化是一种在机器学习中常用的技术,用于限制模型的复杂性,以防止过拟合和提高泛化能力。在主动学习中,正则化被用作一种约束机制,以确保训练数据集的多样性。

具体而言,正则化可以通过引入一个正则化项来实现。这个正则化项通常添加到模型的损失函数中,用于惩罚模型参数的过大或非典型值。正则化项的具体形式可以根据具体的问题和模型而定,常见的正则化项包括L1正则化和L2正则化。

例如,对于神经网络模型,L2正则化可以通过添加模型参数的平方和的一部分作为正则化项来实现。这样做可以使模型倾向于选择那些不仅在训练数据上表现良好,而且在未见过的数据上也有较好的泛化能力的参数。

SVGD-斯坦因变分梯度下降

SVGD是一种联合优化技术,每个模型被称为粒子。粒子在每一步中联合更新,并通过径向基函数(RBF)核进行加权。SVGD最初是利用对数似然熵和交叉熵提出的斯坦因变分梯度下降(Stein Variational Gradient Descent,SVGD)是一种优化算法,用于在主动学习中适应性地估计模型的对数似然。

斯坦因变分梯度下降的核心思想是在潜在空间中使用核函数来估计模型分布的梯度。它通过在潜在空间中随机选择一组粒子,然后通过梯度信息来更新这些粒子的位置,从而逐步逼近模型分布的真实情况。

在主动学习中,斯坦因变分梯度下降被用于适应性地估计模型对于未标记样本的预测不确定性。通过使用斯坦因变分梯度下降,可以更准确地估计模型对于未标记样本的预测不确定性,从而更好地选择那些需要被标注的样本。

斯坦因变分梯度下降的引入可以使模型在训练过程中更好地适应数据的分布变化,从而提高模型的性能和鲁棒性。

采办方案:

在上述文献中,“采办方案”(Acquisition strategy)指的是在主动学习(Active Learning)中选择最优数据样本的策略。主动学习是一种机器学习的方法,其中模型可以主动选择最有价值的样本进行标注或进一步训练,以提高模型的性能。

在图像分割任务中,由于标注数据的获取成本较高,主动学习可以帮助减少标注数据的需求,同时提高模型的性能。采办方案是指在主动学习过程中,根据模型的不确定性和图像相似度等因素,选择最具信息量的样本进行标注。通过选择具有最大覆盖集的样本,可以使模型在有限的标注数据上获得最大的性能提升。

在文献中提到的方法中,使用了全卷积神经网络(FCN)的集成来进行不确定性估计,并结合了基于三维补丁的FCN和背包采集方案。这些方法都是为了解决在医学图像分割任务中的数据采集问题,以达到足够的预算并提高模型的性能。

总之,采办方案是指在主动学习中选择最优数据样本的策略,用于减少标注数据需求并提高模型性。在图像分割任务中,采办方案可以根据模型的不确定性和图像相似度等因素选择最具信息量的样本进行标注。

过滤器:

过滤器(Filters):
过滤器是卷积神经网络中的核心组件之一。它是一个小的矩阵或张量,用于在输入数据上进行卷积操作。过滤器通过滑动窗口的方式在输入数据上移动,并与局部区域进行卷积运算。通过学习过滤器的权重,卷积神经网络可以提取输入数据中的特征。过滤器可以检测输入数据中的边缘、纹理、形状等特征,并将其转化为更高级别的表示。

编码器:

编码器(Encoder):
编码器是一种神经网络结构,用于将输入数据转换为更低维度的表示。编码器通常由多个卷积层和池化层组成,通过逐渐减小特征图的尺寸和通道数,将输入数据压缩为更紧凑的表示。编码器的作用是提取输入数据中的重要特征,并捕捉数据的高级抽象表示。编码器常用于自动编码器(Autoencoder)等任务中,其中它的目标是学习一种紧凑的表示,以便在解码器中重构原始输入数据。

解码器:

解码器(Decoder):
解码器是与编码器相对应的神经网络结构,用于将编码后的表示转换回原始输入数据的形式。解码器通常由多个卷积层和上采样层(如反卷积或插值)组成,通过逐渐增加特征图的尺寸和通道数,将编码后的表示解码为与原始输入数据相似的形式。解码器的作用是从编码的低维表示中恢复出原始数据的细节和结构。解码器常用于图像生成、图像分割等任务中,其中它的目标是生成与原始数据相似的输出。

总结过滤器、编码器、解码器:

在机器学习中,过滤器(Filters),编码器(Encoder),解码器(Decoder)是三个重要的概念,通常与卷积神经网络(Convolutional Neural Networks,CNN)相关联。

总结起来,过滤器用于提取输入数据中的特征,编码器用于将输入数据转换为低维表示,而解码器用于将低维表示转换回原始数据的形式。这三个概念在卷积神经网络中相互配合,共同实现对输入数据的特征提取、表示学习和重构等功能。

斯坦因变分梯度下降在主动学习图像分割中的作用:

斯坦因变分梯度下降(SVGD)在该文中的应用主要有以下几个方面:

  1. SVGD作为一种查询委员会方法,用于提供主动学习方案。它通过维护多个模型参数的副本(粒子),利用确定性的更新规则和核函数的加权,从目标分布中推断出M个样本。

  2. SVGD具有鲁棒优化器的特性,适用于训练集合模型。它通过使用核函数防止模型收敛到异常值,并确保每个模型找到唯一的局部最优解。

  3. 在每次迭代中,每个粒子根据斥力力量和梯度信息进行更新。斥力力量确保粒子之间存在一定的距离,避免彼此过于接近。梯度信息用于指导粒子的梯度下降方向。

  4. 文中提到,SVGD的原始形式使用基于熵的对数似然函数。然而,在医学图像分割任务中,常使用基于Dice系数的连续损失函数。Dice系数损失函数适用于处理医学图像分割中的数据不平衡问题。

  5. 通过与基于集合的模型进行比较,可以观察到基于SVGD的模型在收敛过程中具有较低的标准差,表明其更稳定和可靠。

综上所述,斯坦因变分梯度下降在该文中的应用主要包括主动学习方案中的查询委员会方法,鲁棒优化器的训练集合模型,斥力力量的引入以及基于Dice系数的损失函数的适应。

学习率和训练的批量大小:

在上述文中,学习率(learning rate)是指机器学习算法中的一个超参数,用于控制模型在每次迭代中更新参数的步长大小。学习率决定了模型在参数空间中移动的速度和方向。
在基于SVGD和基于集成的模型中,学习率被设置为固定值0.001。这意味着在每次参数更新时,模型的参数将按照0.001倍的梯度方向进行调整。较小的学习率可以使模型的收敛速度较慢,但可能会更稳定;而较大的学习率可以加快收敛速度,但可能会导致模型在参数空间中跳过最优解。
批量大小(batch size)是指在每次参数更新时,模型所使用的训练样本的数量。在该文中,批量大小被设置为8,表示每次参数更新时,模型会使用8个随机选择的数据点进行训练。较大的批量大小可以提高训练速度,但可能会增加内存需求;较小的批量大小可以提供更多的随机性,但可能会导致训练过程更加不稳定。
总之,学习率是机器学习算法中的一个超参数,用于控制模型在每次迭代中更新参数的步长大小。在该文中,基于SVGD和基于集成的模型都使用固定的学习率0.001,并且批量大小设置为8。

步数和数据集Q查询:

“Q查询”(Q queries)是指在主动学习中从未标记池(Unlabeled Pool)中选择的一批数据样本,这些样本将被提交给oracle进行标注。主动学习是一种机器学习方法,其中模型可以主动选择最有价值的样本进行标注或进一步训练,以提高模型的性能。Q查询是主动学习中的一种策略,用于选择一批具有高信息量的样本进行标注。
在文中提到,胰腺数据集的Q设置为5,而海马体数据集的Q设置为1。这意味着在每次主动迭代中,从未标记池中选择5个胰腺数据集的样本和1个海马体数据集的样本进行标注。
另外,文中还提到了"步数"(steps)的概念。在每次主动迭代中,训练池(Training Pool)的大小会增长,并且每个主动迭代会进行固定数量的训练步骤。步数表示在每次主动迭代中,模型在完整数据集上进行训练的次数。胰腺数据集的步数设置为10000,而海马体数据集的步数设置为1500。
总之,"Q查询"是指在主动学习中从未标记池中选择的一批数据样本,用于提交给oracle进行标注。"步数"表示在每次主动迭代中,模型在完整数据集上进行训练的次数。

骰子得分:

“骰子得分”(Dice score)表示模型在海马体数据集上进行验证时的性能评估指标。骰子得分常用于评估图像分割任务中预测结果与真实标签之间的重叠程度。
具体而言,骰子得分是通过计算预测结果和真实标签的交集与它们的并集之间的比值来衡量相似度。在该文中,海马体数据集的验证骰子得分是使用30个随机选择的数据点进行评估的。左侧的图表示模型作为集合的一部分以及它们的平均值的骰子得分,中心的图表示使用SVGD框架的粒子以及它们的平均值的骰子得分,右侧的图表示集合和SVGD框架的成员之间的方差。
通过比较不同模型或方法的骰子得分,可以评估它们在海马体数据集上的分割性能和相似度。较高的骰子得分表示预测结果与真实标签的重叠程度较高,表明模型的分割结果更准确。相反,较低的骰子得分表示预测结果与真实标签的重叠程度较低,表明模型的分割结果较差。因此,骰子得分可以用来比较不同模型或方法在图像分割任务中的性能表现。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值