【光度学和辐射度学】

光度学

光度学中与光相关的常用量有4个:发光强度、光通量、亮度、照度。其对应的单位为:坎德拉(cd)、流明(lm)、尼特(nit)、勒克斯(lux)。这些均属于光度学(Photometry)的概念,与辐射度量学(Radiometry)概念——如瓦特(W)——是可以一一对应进行理解的。其差别在于:

Photometry(光度学):关键词是“眼睛,人的感觉"。
Radiometry(辐射度量学):关键词是“实际能量”。

举个例子,比如一个高强度红外光源,对于人眼来说看不见,但是对于辐射度量学来说,是一个强光源。

所以人眼对于光谱中不同波长的响应就是两类参数之间转换的关键了。这个值叫Luminous efficiency(Φ(λ))。因为555nm处人眼最灵敏,所以用这个波长的数据作为相对数值的标准,也就是v(555nm)=1;其他波长的Luminous efficiency(Φ(λ))则都是一个小于1的相对值。这也是其坎德拉定义的来源。为什么此处人眼最敏感,是跟眼球的生物结构感光细胞构成有关。

光通量(Luminous flux)与其单位流明(lm)——光度学中的"功率"

流明是光度学(Photometry)上类比于"功率"的概念,和辐射度量学上的瓦特(W)是可以进行对应并进行理解的。光的功率就是光通量,也就是单位时间内通过某个区域的总能量。可以通过对能量进行时间的微分来获取光通量;

在人眼最灵敏的555nm处,流明(lm)和瓦特(W)的换算关系常数Km=638lm/W。或者说,真实的功率(Φe)为1瓦的555nm的光,其光通量(Φ)为638流明。

而对于其他波长l,由于人眼不那么灵敏,同样功率为1W的光,其光通量(Φ)是达不到638lm的;或者说同样1W的光,我们会觉得其他颜色的光不及555nm的亮,luminous efficiency(ν(λ))越小,我们会觉得这光越弱。

照度(Illuminance)与其单位勒克斯——物体/探测器受到了多少功率

勒克斯(lux)这个单位以及其对应的概念照度(illuminance),就用于描述单位面积的物体/探测器受到了多少"功率"(光通量);通俗的说,其描述的是"被照"得厉不厉害。其在辐射测量学上对应的单位是:W/m2。

因为lux这个单位对应的是"被照"得厉不厉害,所以我们不能说哪个光源有多少lux;而且在看到照度这个数值的时候,我们一定也要反应过来这是一个和人的眼睛相关的量。

值得一提的是,照度这个概念(单位lux),以及对应的辐射度量学概念辐射照度(单位W/m2)对于光探测器件的对比与评价非常重要。一般情况下,被测物、光学系统和光探测器件共同构成了一个测量。"我这个样品亮度怎么怎么样,这个光电倍增管/光电二极管/相机能不能测?"这样的问题通常难于回答,因为其中缺失了对光学系统的描述。举个极端而通俗的例子,如果光学系统整个设计得不透光,我们是不能因为"我这个样品亮度和太阳差不多,这个光电倍增管/光电二极管/相机居然测不到。“就说这个探测器的灵敏度很差的。而如果问题变成了"我的样品经过我的光学系统打到探测器上有xxx W/m2(lux),这个光电倍增管/光电二极管/相机能不能测?”,这就准确多了。当然,因为光信号的波长/光谱也同样重要。所以对于光探测器件,最精确的问法是:

“我的样品发出来的光xxx nm(或色温xxxxK),经过我的光学系统打到探测器上有xxx W/m2(或lux),你的光电倍增管/光电二极管/相机能不能测?”

照度根据物体离光源的距离会产生平方反比的效果

发光亮度(Luminance)与其单位坎德拉每平方米(cd/m2)、尼特(nit)——人眼看来面光源的亮度究竟如何

除了点光源,面光源也非常常见。所以另有一个发光亮度的概念来描述面光源的强度。而对于面光源,观察者和这个面所呈的角度也很重要,所以在发光强度的基础上除了需要考虑面积,还得考虑面与观察者的角度问题。特别的,在LED显示屏领域有一个常见单位尼特(nit),一些笔记本电脑的显示屏会给出其发光亮度数值(如300nit),这个单位和cd/m2实际和是一回事儿。

辐射度学

辐射度学有四个基本量对于渲染至关重要:光通量,辐射照度,光强和辐射亮度。不要被这些名词吓坏,实际非常简单。他们都可以从能量关于时间,面积和方向的极限中推导出来。通常来说这四个值都和波长有关。

  • 立体角(solid angle): 平面角在三维空间的延伸, 就理解为三维的角度即可.
  • 辐射通量(radiant flux): 单位时间内辐射的能量.
  • 辐射强度(radiant intensity): 单位时间内在单位立体角上辐射的能量.
  • 辐射度或者辐射亮度(radiance): 单位时间内在单位立体角上辐射的并照射到单位投影面积上的能量.
  • 辐照度(irradiance): 单位时间内辐射的并照射到单位面积上的能量, 也就是各个角度上辐射度总和.

能量

让我们从能量开始。能量中学就学过了,单位是焦耳(J JJ)。光源向外发射光子,每个光子都有特定的波长,并携带了一定的能量。所有上面的四个基本量都是有效衡量光子能量的方法。能量和波长的关系是:
Q = h c λ ​ Q=\frac{hc}{\lambda} ​ Q=λhc

其中c是光速,h是普朗克常量。

光通量

能量描述的是一段时间内做的功。然后渲染中我们更关心某个时刻内光的特性,也就是功率。光的功率就是光通量,也就是单位时间内通过某个区域的总能量。可以通过对能量进行时间的微分来获取光通量;
Φ = lim ⁡ Δ t → 0 Δ Q Δ t = d Q d t \Phi ={\lim_{\Delta t \to 0}}\frac{\Delta Q}{\Delta t} = \frac{\mathrm{d}Q}{\mathrm{d}t} Φ=Δt0limΔtΔQ=dtdQ

光通量的单位是瓦特W。
反过来,如果知道了光通量关于时间的函数,我们可以对时间进行积分球的整体能量:
∫ t 0 t 1 Φ ( t ) d t \int_{t_0}^{t_1}\Phi(t)\mathrm{d}t t0t1Φ(t)dt

光源的总辐射一般用光通量来表达。下图中正中间的光源在两个球上面的光通量是一样的。但是经验告诉我们,二者在该光源下表现出来的亮度等特性是不一样的。所以光通量还不足以表达光的足够信息。注意到实际上两个球的面积是不一样的。

辐射照度

从上面我们可以看出来我们还需要光的能量关于面积的衡量,这就是辐射照度。

实际有两种辐射照度:一种我们用E表示(注意这个E不是上面的辐射照度), 表示到达表面的辐射照度,可以叫做“辐射入射度”;另一种是离开表面的辐射照度,可以叫做“辐射出射度”(radiant exitance), 用M表示。其他地方可能看到E EE同时用来表示入射度和出射度,但是我们为了清晰分开表达。
再看上图的例子,虽然两个球的辐射通量是一样的,但是外球的辐射入射度E比内球的E要小。

所以辐射照度可以解释为什么外球上的一个点接受到的光的能量更少。并且可以知道这种衰减是正比于和光源之间的距离的平方的。
更一般的,对于某个点p,我们可以通过去p点功率关于面积的微分来定义辐射照度:

理解了辐射照度之后,我们就可以更好的理朗伯定律。朗伯定律说明到达某个表面的光的能量正比于光的方向和表面法向量之间的余弦值

关键一点是:这里是从辐射照度的角度来考虑表面能量,也就是单位面积的功率。如果从能量角度来说,正射入和斜射入的总能量是一样的,总功率也是一样的。但是二者还是展现出来不同的光学现象。那么A的光几乎照不到平面上,可以类比凌晨时候的太阳。而左图相当于正午时候的太阳。这种类比并不严谨。另外一个更好的类比是,你可以尝试用手电筒在晚上照射某个区域。当垂直照射的时候,此时照亮的区域少,但是非常明亮;但是当你倾斜角度,例如照射很远的区域,这个时候整体亮度就会很低,但是光覆盖的范围很大。实际上两种情况下所有照亮区域的总光能是一致的,但是由于倾斜手电筒的时候面积更大,导致单位面积内的光的能量降低。)所以这里朗伯定律的描述并不严谨,因为到达整个照亮表面的能量和方向无关,应该描述成:到达某个表面每个点的光的能量正比于光的方向和表面法向量之间的余弦值。实际上也就是辐射照度。具体推导请读者自己推导。

立体角和光强

好了,上面的辐射照度是不是足够用来描述常见的光学现象了呢??并没有。现在把你想象成一个空间中的一个光子大小。这个时候你会发现一些微观光学现象的震撼:光子在不断震动携带能量、在空间中不同介质中间不断发生作用、吸收释放等等。好扯远了,现在把你放在某个观察点观察照到某个面积上的光,很大概率在不同观察点你会观察到不同的的光亮度(也就是各向异性,真正理想的各项同性的表面我觉得现实生活中是不存在的,或多或少都会有各向异性,只是明显程度不同而已。)。另外一个例子是金属表面的高光,会随着你不同观察方向位置发生变化。这一类现象告诉我们,很多光学现象与观察角度有很大关系,即使其他条件完全一样的情况下。为此,辐射度学引入了“立体角”(Solid angle)和光强的概念。
立体角是2D平面的角度在三维球体上面的拓展。

现在考虑一个无穷小的光源在散发光子,如果我们将这个光源防止在上面的球中心处,我们可以计算光源某个角度的发射功率,这个量就是光强I

这计算的是平均,并且假定这个理想光源在所有方向上面都是完全均匀发散的,也就是上面提到的理想各项同性光源。更一般的,取光通量在方向上面的微分可以获取某个方向的光强:

光强和辐射照度二者是没有关系的,是从不同角度对光通量进行描述的。二者均可以与光通量进行微积分操作上的转化。

辐射亮度

终于到了最重要的基本量。辐射照度给了p点光通量在面积上的微分,但是并不能区分不同方向的光通量。举个例子,考虑两个手电筒,二者口径不一样。大的手电筒A垂直照射地面B,小的手电筒C倾斜45°照射地面D,通过辐射照度公式我们可以使得B和D的辐射照度完全一样,但是我们选定某个观察方向观察照射平面会有不同光学现象。

这种不同有一方面原因就是由于观察方向的不同。辐射亮度衡量的是辐射照度在立体角上的微分,定义是: 表示的是垂直于方向的表面的辐射照度。

如果你还记得上面的朗伯定律,你会发现这种这种垂直的表示抵消了朗伯定律里面的cosθ 。那么应该如何理解辐射亮度呢?

因为确实现实生活中我们观察到的照射亮度是和角度有关系的,也就是郎伯定律是宏观可见的性质,但是如果按照辐射亮度的理解,那么相同光源以不同方向照射平面,平面上某点某方向的辐射亮度是一样的!

那么这个辐射亮度对应的是什么宏观光学现象呢?这里我的理解是未必正确:辐射亮度不是针对宏观现象提出来的量,它本身就是针对微观层面的微分的。考虑照射的表面无穷小,这个时候光源某个方向就成了一个理想的光束,照射的是一个理想的点,那么这个单独点上面的辐射亮度确实是一样的!
但是宏观的亮度确实有不一样,为什么呢?我认为是密度的问题。当垂直照射,由于照射区域紧凑,导致相同区域有更多的光子照射,而倾斜的时候照射表面区域变大,虽然辐射亮度一样,但是到达一定区域的光子的密度更少,也就是光子要照亮的区域更大,所以会变暗。注意这里描述的是“一定区域”,也就是又变成了宏观层面。
因为人眼看到的只能是“一定区域”。辐射亮度当然也可以定义为光通量在垂直面积和立体角上的微分:
好了,到达辐射亮度的级别基本足够用了。当辐射亮度已知后,其他三个辐射度学基本量都可以根据积分公式获取。这也是为什么辐射亮度最经常使用的一个重要原因。另外一个原因就是辐射亮度在真空中光线传输过程中保持恒定。

参考文献

光度学:http://share.hamamatsu.com.cn/specialDetail/838.html
辐射度量学(Radiometry)的基础知识:https://blog.csdn.net/woodengm/article/details/121257032
辐射度学四个基本量:https://blog.csdn.net/zhaishengfu/article/details/94603699

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值