基于YOLOv5的NEU-DET钢材表面缺陷任务,加入CFPNet、动态卷积ODConv、多个检测头提升精度

目录

1.钢铁缺陷数据集介绍

2.基于yolov5s的训练

 2.1四个检测头训练结果

2.2 加入即插即用的动态卷积ODConv

2.3 ECVBlock


1.钢铁缺陷数据集介绍

NEU-DET钢材表面缺陷共有六大类,分别为:'crazing','inclusion','patches','pitted_surface','rolled-in_scale','scratches'

每个类别分布为:

训练结果如下:

2.基于yolov5s的训练

map值:

 

 2.1四个检测头训练结果

对应博客:涨点技巧:基于Yolov5的微小目标检测_AI&CV的博客-CSDN博客

 

 

map从原始的0.742提升到0.786

2.2 加入即插即用的动态卷积ODConv

https://blog.csdn.net/m0_63774211/article/details/129571319

即插即用的动态卷积ODConv 

 

通过并行策略引入一种多维注意力机制以对卷积核空间的四个维度学习更灵活的注意力。ODConv可以描述成如下形式:其中,表示卷积核的注意力标量 

 map从原始的0.742提升到0.761

2.3 ECVBlock

基于YoloV5 ECVBlock的小目标检测(CFPNet即插即用,助力检测涨点,YOLOv7/YOLOv5均有效)_AI&CV的博客-CSDN博客

 如图2所示,CFP主要由以下部分组成:输入图像、用于提取视觉特征金字塔的CNN主干、提出的显式视觉中心(EVC)、提出的全局集中规则(GCR)以及用于目标检测的去解耦head网络(由分类损失、回归损失和分割损失组成)。在图2中,EVC和GCR在提取的特征金字塔上实现。

  提出的EVC主要由两个并行连接的块组成,其中使用轻量级MLP来捕获顶级特征的全局长期依赖性(即全局信息)。

 如何将ECVBlock应用到yolov5/yolov7是本文的关键,重点是增强用于这些检测器的特征金字塔的表示。

1)将ECVBlock添加到backbone或者是head在不同数据集的性能会不一致,比如本文添加到backbone,在NEU-DET钢材表面缺陷和道路缺陷如任务中取得的涨点也是不一样的;

2)比如在backbone添加的位置不同对最终的性能也是完全不一样的,这点也佐证了深度学习具有玄学,体现了调参的必要性,在不断的调参中自然会取得一定经验值;

 map从原始的0.742提升到0.758 

评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值