YOLOv5涨点技巧:一种新颖的多尺度特征融合方法iAFF

111 篇文章 ¥199.90 ¥299.90
本文介绍了YOLOv5中引入的创新融合方法iAFF,该方法通过注意力机制增强多尺度特征融合,提高轻量级模型在边缘设备的检测准确性。详细步骤包括在YOLOv5的Neck部分替换Concat操作,以及在源码中的具体修改。实验证明,iAFF能有效提升模型性能,同时减小模型大小和计算复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡💡💡本文全网独家改进:1)引入了一种新颖的多尺度特征融合iAFF;2)为了轻量级部署,和GhostConv有效结合在边缘端具有竞争力的准确性

💡💡💡在YOLOv5中如何使用

1)iAFF加入Neck替代Concat;

💡💡💡Yolov5/Yolov7魔术师,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络

💡💡💡重点:通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!<

### YOLOv8 中多尺度特征融合 FPN 的实现方式与原理 #### 1. 基于 GFPN 的结构化特征融合网络 YOLOv8 使用基于 GFPN (Global Feature Pyramid Network) 的结构化特征融合网络重建了原始颈部部分,以促进不同级别之间的有效特征融合[^1]。这种设计使得低级特征和高级特征可以在多个尺度上相互补充,增强了模型对不同类型物体的检测能力。 #### 2. 多尺度通道注意力模块(iAFF) 为了进一步优化特征融合过程,YOLOv8 引入了一个名为 iAFF(Iterative Attentional Feature Fusion)的多尺度通道注意力模块[^3]。此模块通过对通道上的多尺度上下文信息进行聚合,不仅强调了全局分布较大的对象,也关注到了局部分布较小的目标。具体来说: - **多尺度上下文信息聚合**:通过在不同尺度下计算特征图的重要性权重,确保每个尺度下的重要特征都能被充分保留。 - **迭代注意力机制**:采用多次迭代的方式逐步调整各层之间传递的信息量,使最终得到的特征表示更加鲁棒且富含细节。 ```python def multi_scale_channel_attention(feature_maps): scales = [F.interpolate(feat, scale_factor=scale, mode='nearest') for feat in feature_maps] # 计算各个尺度下的注意力权重 weights = [] for s in scales: weight = compute_attention_weight(s) weights.append(weight) fused_feature = sum([feat * w for feat, w in zip(scales, weights)]) return fused_feature ``` #### 3. HS-FPN 结构的应用 除了上述方法外,YOLOv8 还借鉴了 HS-FPN (Hierarchical Scale-based Feature Pyramid Network)的设计理念,在处理多尺度特征融合时采用了更高效的策略[^4]。HS-FPN 主要由两大部分组成——特征选择模块和特征融合模块,这两个模块共同作用降低了整体参数数量的同时提升了性能表现。 ```python class HSFusionModule(nn.Module): def __init__(self, channels_list): super(HSFusionModule, self).__init__() self.feature_selection_layers = nn.ModuleList([ ConvLayer(in_channels=c, out_channels=c//2, kernel_size=1) for c in channels_list]) def forward(self, features): selected_features = [conv(feat) for conv, feat in zip(self.feature_selection_layers, features)] fused_output = torch.cat(selected_features, dim=1) return fused_output ``` 综上所述,YOLOv8 在多尺度特征融合方面的创新主要包括引入基于 GFPN 的新型颈部分支、应用 iAFF 模块强化跨尺度交互以及利用 HS-FPN 架构简化计算流程并保持高效能输出。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值