图深度学习——1.介绍

1、介绍

在数学中,图是描述于一组对象的结构,其中某些对象对在某种意义上是“相关的”(存在某种关系)。这些对象对应于称为顶点的数学抽象(也称为节点或点),并且每个相关的顶点对都称为(也称为链接或线)。

如下图,是王者荣耀里武则天的人物关系图,每个英雄为一个节点(表示对象),他们之间的连接线为边(表示对象之间的关系)。

图(Graph)包含对象(Object)和对象之间的关系 (Relation)。图作为复杂系统的简化和抽象,是人类探究复杂系统的重要研究工具和路径。 图的抽象性使得复杂系统中的图或网络具有极大的普适性和表示性,适用于不同的科学领域和复杂环境。

我们的生活中充满着各种各样的图。eg.亲戚关系图,包括我们的七大姑八大姨;同学关系图、高铁网络图等。有时,图也称为网络,例如社交网络、经济网络等。

2、图是一种重要工具

图具有较强的表示性和普遍性,是研究和分析复杂社会经济系统的重要且有效工具。
复杂系统用复杂网络或复杂图表示后,复杂系统的相关问题可以转化成复杂网络或复杂图问题:例如,复杂交通系统中的导航问题、 考虑道路交通流量权重的交通网络问题 。
此外,相信大家都有见过QQ好友推荐,有什么可能认识的人,有几个共同好友。公司通过分析用户与用户之间的关系,为用户推荐潜在好友。

随着信息技术发展,图越来越被重视。图可以表示对象之间或实体之间复杂交互的关系。这种图是模拟社会、技术和⽣物等系统的基本⼯具。

从下图我们可以看到,图可以用于建模:社交图、经济图、通信图、事件图、知识图、病毒传播路径网络、信息图、互联网、神经元图、分子图、细胞图等等。

社交网络分析: 

社交网络中的个人可以表示为图中的节点,他们之间的关系(比如朋友关系)可以表示为图中的边。通过分析这些图,可以发现社交网络中的关键个人、信息传播路径等。例如,很多社交媒体平台使用图论算法来推荐好友、推广内容等。

 

地图导航

地图中的道路和交叉路口可以用图来表示,道路为边,交叉路口为节点。图论算法被用来计算最短路径、最优路径等,帮助人们规划行车路线。比如,Google Maps就使用了图论算法来计算最快的驾驶路线。

影响力传播:

例如,一些八卦新闻,通过一传十,十传百,最后变成了众所周知的事情。在病毒的传播中,通过病毒传播模型,可以对人、社区、城市和国家之间的连通性(疾病传播的概率)进⾏建模。 识别和切断传播中⼼可以定位疾病传播的影响。比如,它可以用于建模新冠病毒的传播。

知识图谱:

知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。

推荐系统:

预测用户偏好可以抽象为一个预测图中边的存在的问题。我们可以将用户看作一个子图,将商品看作一个子图,然后寻找这两个子图内可能的用户和商品的关系。

 生物化学应用:

蛋白质原子结构的“网络”、药物的相互作用/作用/副作用,甚至食物链自然地形成具有潜在异质节点的网络。在生物学中,蛋白质相互作用网络、基因调控网络等生物网络可以用图来表示。通过分析这些图,可以揭示生物体内部分子之间的相互作用关系,从而理解生物体内部的调控机制和生物进化过程。

近年来,使用图卷积网络来预测化学品的影响已受到关注。 例如,可以使用药物和蛋白质的节点的图来对药物组合的效果进行建模。

3、 图结构数据上的机器学习

  • 节点预测:预测节点的类别或某类属性的取值
    • 例子:对是否是潜在客户分类、对游戏玩家的消费能力做预测
  • 边预测:预测两个节点间是否存在链接
    • 例子:知识图谱补全、好友推荐、商品推荐
  • 图的预测:对不同的图进行分类或预测图的属性
    • 例子:分子属性预测
  • 节点聚类:检测节点是否形成一个社区
    • 例子:社交圈检测
  • 其他任务
    • 图生成:例如药物发现,在化学合成中设计新的分子结构
    • 图演变:例如物理模拟

……

4、应⽤神经⽹络于图⾯临的挑战

过去的深度学习应⽤中,我们主要接触的数据形式主要是这四种:矩阵、张量、序( sequence )和时间序列(time series ),它们都是规则的结构化的数据。然⽽图数据是非规则的非结构化的,它具有以下的特点:
  1. 图的大小和复杂性:图可以是非常庞大和复杂的,其中可能包含数百万甚至数十亿个节点和边。

  2. 节点度不均匀:在图中,节点的度(即相邻边的数量)通常是不均匀的,有些节点可能具有非常高的度,而有些节点可能只有很少的邻居。这会导致模型在处理高度连接节点时出现性能瓶颈。

  3. 图的结构和拓扑信息:图结构中包含了丰富的拓扑信息,例如节点之间的连接模式、局部子图的结构等。

  4. 图的异构性:现实世界中的图通常是异构的,即节点和边可以具有不同的类型和属性。

  5. 动态性:图通常是动态的,并具有多模态的特征;

以往的深度学习技术是为规则且结构化的数据设计的,无法直接用于图数据。克服这些挑战需要结合图论、机器学习和计算机科学的知识,不断地改进和创新神经网络模型和算法,以适应不断变化和复杂化的图结构数据应用场景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值