概率图、阈值图和二值化图生成
概率图生成
反卷积,将尺寸大小还原成输入图,通道数将为1
阈值图生成
二值化图生成
传统的二值化,直接给定某个阈值,所以没法直接用于训练,可微的二值化函数,如下(其实就是一个带系数的sigmoid)
P代表概率图,T代表从网络中学习到的自适应阈值图;k是膨胀因子(经验性设置k=50)
标签生成
概率图标签生成
ignore_flags表示文本框是否忽略
生成一张大小640,640,全为0的图
遍历图中所有多边形标注框,对每个多边形标注框进行内缩(-distance)
下图中红线是标注框,绿线是外扩线,蓝色为内缩线,外扩内缩距离都为D
阈值图标签生成
遍历所有标注框
计算膨胀距离D并进行膨胀
polygon用expanded_polygon替换
利用广播机制通过xs、ys表达这个外框区域所有像素点的坐标
标注框两个点确定一条线段,遍历所有的线段,计算区域内到坐标框的距离,通过余弦定理和面积公式。选取最短距离,除以之前算好的距离D,进行归一化。(mmocr中的公式有所出入)这个距离会用clip控制在0到1之间,框内超过距离D的像素点归一化之后的值肯定大于1。
划定范围,用1去减归一化的结果