依概率收敛和依分布收敛(附一道例题)

写在前面

这几日做到一道和依分布和概率收敛的例题,感觉对加深理解很有帮助,因此也记录在博客上面。

随机变量的收敛

定义 X 1 , ⋯   , X n X_1, \cdots, X_n X1,,Xn为随机变量序列, X X X是另一个随机变量, F n F_n Fn表示 X n X_n Xn的CDF, F F F表示CDF。

依概率收敛

∀ ϵ > 0 , n → ∞ , \forall \epsilon>0,n \rightarrow \infin, ϵ>0,n, P ( ∣ X n − X ∣ > ϵ ) → 0 , \mathbb{P}(|X_n-X|>\epsilon) \rightarrow0, P(XnX>ϵ)0,则称 X n X_n Xn依概率收敛于 X X X

依分布收敛

若对 F F F任意连续的点 t t t,有 lim ⁡ n → ∞ F n ( t ) = F ( t ) \lim_{n\rightarrow \infty}F_n(t)=F(t) nlimFn(t)=F(t)
则称 X n X_n Xn依分布收敛于 X X X.

一个很有助于加深理解的例题

X n ∼ N ( 0 , 1 n ) X_n \sim N(0, \frac{1}{n}) XnN(0,n1) X X X为随机变量,分布为 F ( x ) = 0 , i f X < 0 ; F ( x ) = 1 , i f X ≥ 0 F(x)=0,if X<0;F(x)=1,if X \ge 0 F(x)=0,ifX<0;F(x)=1,ifX0.

X n X_n Xn是否依据概率或依分布收敛于X?

首先考虑依分布收敛,
L e t   Y n = n X n , s . t .   Y n ∼ N ( 0 , 1 ) . Let \ Y_n=\sqrt{n}X_n, s.t. \ Y_n \sim N(0,1). Let Yn=n Xn,s.t. YnN(0,1).
F ( x ) = P ( X ≤ x ) = P ( n X ≤ n x ) = P ( Y ≤ n x ) F(x)=P(X \le x)=P(\sqrt{n}X \le \sqrt{n}x)\\ =P(Y \le \sqrt{n}x) F(x)=P(Xx)=P(n Xn x)=P(Yn x)从而
lim ⁡ n → ∞ F Y ( n x ) = 0   i f x < 0 lim ⁡ n → ∞ F Y ( n x ) = 1   i f x > 0 \lim_{n\rightarrow\infty}F_{Y}(\sqrt{n}x)=0 \ ifx<0 \\ \lim_{n\rightarrow\infty}F_{Y}(\sqrt{n}x)=1 \ ifx\gt0 nlimFY(n x)=0 ifx<0nlimFY(n x)=1 ifx>0因此,以分布收敛于 X X X。不考虑 X = 0 X=0 X=0的点是因为不是连续的点,不在定义所谈论的范围内。

其次考虑以概率收敛的问题:
P ( ∣ X n − X ∣ > ϵ ) = P ( X n − X > ϵ ) + P ( X n − X < − ϵ ) = P ( X n > 0 + ϵ ) + P ( X n < − ϵ ) ≤ P ( X n > ϵ ) + P ( X n ≤ − ϵ ) ≤ 1 − F n ( ϵ ) + F n ( − ϵ ) → 1 − F ( ϵ ) + F ( − ϵ ) ≤ 1 − 1 + 0 = 0 \begin{aligned} P(|X_n-X| > \epsilon) &= P(X_n-X> \epsilon) + P(X_n-X< -\epsilon)\\ &=P(X_n > 0+\epsilon) + P(X_n < -\epsilon) \\ &\le P(X_n>\epsilon) + P(X_n \le -\epsilon)\\ &\le 1-F_n(\epsilon)+F_n(-\epsilon)\\ &\rightarrow 1-F(\epsilon)+F(-\epsilon)\\ &\le 1-1+0=0 \end{aligned} P(XnX>ϵ)=P(XnX>ϵ)+P(XnX<ϵ)=P(Xn>0+ϵ)+P(Xn<ϵ)P(Xn>ϵ)+P(Xnϵ)1Fn(ϵ)+Fn(ϵ)1F(ϵ)+F(ϵ)11+0=0因此同样依概率收敛。其中,倒数第二个箭头是因为已经知道依分布收敛。

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
先验分布和后验分布是贝叶斯统计推断方法中的重要概念。 先验分布是指在进行推断之前,根据以往的知识、经验和信息对未知参数的分布进行估计。通常情况下,先验分布是由先前的实验数据、专家意见或相关的先验信息所确定。先验分布可以看做是对未知参数的先前假设或猜测。 后验分布则是在得到观测数据之后,根据贝叶斯公式将先验分布与似然函数结合起来,得到参数的后验分布。后验分布是在已经观测到数据之后对参数进行概率推断的结果,可以看作是在先验分布的基础上通过数据进行修正的结果。 举个例子来说明先验分布和后验分布的概念。假设我们要估计某种产品的成功率,根据以往的经验,我们对其成功率有一个先验分布,比如服从均匀分布。然后我们进行若干次实验,观测到了产品成功的次数。根据贝叶斯公式,我们将先验分布与似然函数结合起来,得到参数的后验分布。后验分布可以告诉我们在观测到这些数据之后,产品成功率的可能取值范围以及其概率分布。 先验分布和后验分布的使用,能够帮助我们在统计推断中更准确地估计未知参数的值。在贝叶斯统计推断中,先验分布和后验分布起到了关键的作用,使我们能够从先验的角度出发,并通过不断迭代来更新和修正我们的估计。先验分布和后验分布是贝叶斯统计推断方法中的重要基础。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值