机器学习面试-核心概念-问题理解

1.机器学习的思想

计算机程序随着经验的积累,能够实现性能的提高。对于某一类任务T及其性能度量P,若一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么就称这个计算机程序在从经验E学习。


机器学习是人工智能的一个分支,它的核心思想可以从以下几个方面来抽象和通俗地解释:

  1. 数据驱动:机器学习依赖于大量的数据。就像人们通过阅读书籍来学习知识一样,机器学习通过分析数据来学习规律。

  2. 模式识别:机器学习的目标是识别数据中的模式。比如,通过分析大量猫的图片,机器可以学会识别猫的特征。

  3. 算法优化:机器学习使用各种算法来处理数据,这些算法会不断优化以更好地从数据中学习。就像人们通过不断练习来提高技能一样。

  4. 预测与决策:学习到的模式可以用于预测和决策。比如,一个天气预报模型可以预测明天的天气。

  5. 自适应性:机器学习模型可以随着新数据的输入而不断更新和改进。这就像人们根据新信息调整自己的观点和决策。

  6. 泛化能力:好的机器学习模型不仅能在训练数据上表现良好,还能泛化到未见过的数据上。这就像是学会了骑自行车的人,即使换了一辆不同的自行车也能骑得很好。

  7. 自动化:机器学习可以自动化许多任务,比如自动化邮件分类、语音识别等,这大大提升了效率。

用一个通俗的例子来解释机器学习:想象你有一个智能助手,它通过观察你每天的饮食习惯来学习你的口味。随着时间的推移,它开始能够预测你今天可能想吃什么,甚至在你提出要求之前就为你准备好了。这就是机器学习的一个简单例子,它通过观察(数据)学习了你的偏好(模式),然后使用这些信息来做出预测(决策)。

2.数据挖掘、机器学习、人工智能三者之间的关系

机器学习与其他领域之间的关系如下图所示:

数据挖掘:通过处理各种数据来促进人们的决策

机器学习:使机器模仿人类的学习来获取知识

人工智能:使用机器学习和推理来最终形成特定的智能行为


数据挖掘、机器学习和人工智能是三个紧密相关但各有侧重点的概念。下面我将先抽象地描述它们之间的关系,然后再用一个通俗易懂的例子来解释。

  1. 抽象描述

    • 数据挖掘:是分析大量数据以发现模式和关系的过程。它通常用于从数据集中提取有用信息,是机器学习和人工智能的基础。
    • 机器学习:是一种让计算机系统利用数据来提高性能的技术。它通过算法让计算机能够从数据中学习,从而做出预测或决策。
    • 人工智能:是计算机科学的一个分支,旨在创建能够执行通常需要人类智能的任务的系统。机器学习和数据挖掘是实现人工智能的关键技术之一。
  2. 关系

    • 数据挖掘提供了机器学习所需的原材料,即数据中的模式和信息。
    • 机器学习是实现人工智能的一种手段,通过学习数据来提高智能行为。
    • 人工智能是一个更广泛的概念,包含了机器学习和其他技术,以实现更高层次的智能行为。
  3. 通俗易懂的例子: 想象一个大型图书馆,里面有成千上万本书。数据挖掘就像是图书馆管理员,负责整理和分类这些书籍,找出哪些书是关于历史的,哪些是关于科学的,等等。这个过程就是从大量数据中提取有用信息。

    机器学习则像是图书馆里的一个智能机器人,它通过阅读这些书籍来学习知识。随着阅读的书籍越来越多,它能够回答关于历史或科学的问题,甚至能够预测你接下来可能想读什么书。

    人工智能就像是整个图书馆的智能系统,它不仅包括了智能机器人,还有自动借书机、智能导航系统等,所有这些都让图书馆更加智能和高效。

在这个比喻中,数据挖掘是基础,提供了机器学习所需的信息;机器学习是核心,通过学习来提高智能;人工智能则是最终目标,实现了一个高度智能化的环境。

3. 数据挖掘及其相关流派

数据挖掘使用诸如机器学习,统计和数据库之类的方法来发现相对大量的数据集中的模式和知识,涉及数据预处理,模型和推理,可视化等。

 异常检测(anomalydetection):识别不符合预期模式的样本和事件。异常也称为离群值,偏差和异常。异常检测通常用于入侵检测,银行欺诈,疾病检测,故障检测等。

关联规则学习(Associationrulelearning):发现数据库中变量之间的关系(强规则)。例如,在购物篮分析中,发现规则{面包,牛奶}→{酸奶}表示如果客户同时购买面包和牛奶,他们很有可能也会购买酸奶,这些规则可以用于市场营销。

聚类:一种探索性分析,在数据结构未知的情况下,根据相似度将样本划分为不同的群集或子集,不同聚类的样本有很大的差异,以便发现数据的类别和结构。

分类:根据已知样本的某些特征确定新样本所属的类别。通过特征选择和学习,建立判别函数以对样本进行分类。

回归:一种统计分析方法,用于了解两个或多个变量之间的相关性,回归的目标是找到误差最小的拟合函数作为模型,并使用特定的自变量来预测因变量的值。

4.机器学习算法分类

算法定义:自动分析数据并从中获取模式(规律),之后使用模式预测未知数据的方法。

算法分类:监督学习,非监督学习和半监督学习。

在机器学习中,算法可以根据它们处理数据和学习模式的方式进行分类。主要分为三类:

  1. 监督学习(Supervised Learning):算法从标记的训练数据中学习,即每个训练样本都有一个已知的输出标签。目的是学习输入数据到输出标签之间的映射关系,以便对新的、未知的数据进行预测。

  2. 非监督学习(Unsupervised Learning):算法处理没有标记的训练数据,它们试图发现数据中的结构和模式。常见的任务包括聚类和关联规则学习。

  3. 半监督学习(Semi-supervised Learning):介于监督学习和非监督学习之间,算法使用一部分标记数据和大量未标记数据进行训练。这种方法适用于标记数据稀缺但未标记数据丰富的情况。

通俗易懂的解释

想象一下,你有一个大型的图书馆,里面有成千上万本书,但这些书没有分类标签。

  • 监督学习:就像有一个经验丰富的图书管理员,他知道每本书属于哪个类别(如历史、科学等),并教你如何根据书的封面、标题等特征来识别这些类别。在这种情况下,你已经有了正确的分类信息,只需要学习如何识别它们。

  • 非监督学习:就像你没有任何分类信息,需要自己探索这些书,找出它们之间的相似之处,然后将它们归类到不同的类别中。这可能涉及到观察书的封面设计、主题或作者等,以找出它们之间的联系。

  • 半监督学习:这是一种中间情况,你可能只有一小部分书的分类信息,但你需要对整个图书馆进行分类。你首先使用这些已知的分类信息来学习一些基本的规则,然后利用这些规则来帮助对剩余的书籍进行分类。

在机器学习中,这些分类方法帮助算法从数据中学习并做出预测或发现模式,就像图书管理员和图书馆的智能系统在处理书籍分类一样。

机器学习可以分为三种常见的机器学习任务:回归,分类和聚类。

某些机器学习算法可能同时属于不同的类别,例如,某些深度学习算法可能存在于监督学习中,也可能存在于半监督学习中。在具体的实践过程中,可以根据实际需要进行具体地选择。

 

5.如何进行机器学习算法的选择

进行机器学习算法的选择是一个多步骤的过程,涉及到对问题的理解、数据的分析、算法性能的评估以及实际应用的考虑。以下是一些关键步骤和考虑因素:

问题定义:首先,明确你要解决的问题类型。是分类问题、回归问题、聚类问题还是其他类型的预测问题?
数据理解:分析你的数据集,包括数据的规模、质量和特征类型。数据的这些属性将影响算法的选择。
算法熟悉度:考虑你对不同算法的熟悉程度以及它们在你的问题领域中的常见应用。
算法性能:评估不同算法在类似问题上的历史表现,包括它们的准确性、速度、稳定性和对数据规模的适应性。
模型复杂性:选择一个既不过于简单(可能无法捕捉数据的复杂性)也不过于复杂(可能导致过拟合)的模型。
训练和测试:使用交叉验证等技术来评估不同算法在你的数据集上的表现。
资源限制:考虑计算资源的限制,包括算法的运行时间和所需的内存。
可解释性:某些领域可能需要模型的决策过程是可解释的,这可能影响算法的选择。

6.分类算法概述

分类算法

◆定义:将分类规则应用于记录的目标映射,将它们划分为不同的分类,并建立具有泛化能力的算法模型,即构建映射规则以预测未知样本的类别

分类算法任务

◆分类:经过训练而建立的预测模型在遇到未知样本时会使用建立好的模型对未知样本进行类别的划分

◆描述:描述性分类主要解释和区分现有数据集中的特征,例如,描述动植物的各项特征,并进行标注分类,通过这些特征来确定它们属于哪个类别

机器学习的分类算法包括:决策树,支持向量机(SupportVectorMachine,SVM),最近邻(K-NearestNeighbor,KNN)算法,贝叶斯网络(BayesNetwork)和神经网络等算法。

7.泛化能力

泛化能力是机器学习模型的一个重要特性,指的是模型在面对新的、未见过的数据时,能够做出准确预测的能力。一个具有良好泛化能力的模型能够捕捉到数据的内在规律,而不是仅仅记住训练数据。这种能力使得模型能够应用到更广泛的场景中,而不仅仅是它所训练的具体数据集。

泛化能力通常与以下几个因素相关:

  • 过拟合:模型过于复杂,导致它在训练数据上表现很好,但在新数据上表现差。
  • 欠拟合:模型太简单,无法捕捉数据的复杂性,导致在训练数据和新数据上都表现不佳。
  • 模型选择:选择适当的模型复杂度,以平衡过拟合和欠拟合。
  • 数据多样性:训练数据的多样性有助于提高模型的泛化能力。
  • 正则化:通过限制模型的复杂度来提高泛化能力。

通俗易懂的解释

想象你是一名学生,正在学习一门新的语言。

  • 泛化能力:就像你学习了一门语言的基本规则和词汇后,能够理解并使用这门语言进行交流,即使面对你从未听过的句子或表达方式。

  • 过拟合:如果你只学习了课本上的例句,而没有真正去实践和使用这门语言,你可能只会在考试中做得很好,但在实际对话中却无法流利交流。

  • 欠拟合:如果你只学了一些基本的词汇和非常简单的句子结构,你可能连基本的交流都无法完成。

  • 模型选择:选择一个适合你学习水平的课程,既不过于简单,也不过于复杂,这样你才能更好地掌握语言。

  • 数据多样性:如果你在学习过程中接触了不同的语言环境和语境,比如电影、歌曲、日常对话等,你的语言能力会更加全面。

  • 正则化:就像在学习过程中,老师会提醒你不要死记硬背,而是要理解语言的内在逻辑和规则,这样你才能更好地运用这门语言。

泛化能力是衡量你学习成果的一个重要标准,它决定了你能否将所学知识应用到新的情境中。在机器学习中,泛化能力决定了模型在面对新数据时的预测能力。

8.过拟合与欠拟合

过拟合(Overfitting)和欠拟合(Underfitting)是机器学习模型在训练过程中可能出现的两种极端情况:

过拟合:模型在训练数据上表现非常好,但对新数据的预测能力差,因为它捕捉了训练数据中的噪声和细节,而不是潜在的模式。
欠拟合:模型在训练数据上表现不足,未能捕捉数据的基本模式,导致在新数据上同样表现不佳。
避免这两种情况的常见方法包括:

数据增强:增加数据集的多样性和大小。
特征选择:选择与问题最相关的特征。
模型选择:选择适合数据复杂性的模型。
正则化技术:如L1或L2正则化,限制模型复杂度。
交叉验证:评估模型在不同数据子集上的表现。
早停法(Early Stopping):在训练过程中提前终止以避免过拟合。
集成方法:如随机森林或梯度提升机,通过组合多个模型来提高泛化能力。
通俗易懂的解释
想象你正在学习如何打网球。

过拟合:这就像你在一个特定的场地上练习,这个场地的地面、光线和风向都是完美的。你在这个场地上打得非常好,但当你去其他场地时,你发现你的技能似乎不起作用了,因为你只学会了在这个特定环境下打球。
欠拟合:这就像你只学会了基本的握拍和击球,但没有练习过如何移动、定位或应对不同的球速和旋转。当你真正比赛时,你会发现自己无法应对对手的各种击球。
为了避免过拟合和欠拟合,你可以采取以下措施:

数据增强:就像在不同的场地、不同的天气条件下练习,这样你就能适应各种环境。
特征选择:专注于提高你的步法、力量和策略,而不是只关注握拍的方式。
模型选择:选择适合你技能水平的教练和训练计划,既不过于基础,也不过于高级。
正则化技术:就像教练会限制你使用某些技巧的次数,以确保你不会过度依赖它们。
交叉验证:通过与不同的对手比赛来检验你的技能,看看你在不同情况下的表现。
早停法:如果你发现自己在训练中已经达到了瓶颈,就停止过度练习,转而寻求新的训练方法或策略。
集成方法:就像学习不同的教练和顶级球员的技巧,将它们融合到你自己的风格中,以提高你的适应性和技能。
通过这些方法,你可以确保你的网球技能不仅在特定条件下有效,而且能够在各种情况下都表现出色,这与机器学习中提高模型泛化能力的目标是一致的。

9.特征工程

特征工程(Feature Engineering)是机器学习中的一个重要步骤,指的是从原始数据中提取、构建和选择那些对模型预测能力有重要影响的特征(变量)。这一过程对提高模型的性能至关重要。特征工程包括以下几个关键步骤:

数据探索:了解数据的分布、范围和潜在的模式。
特征提取:从原始数据中提取有用的信息,形成新的特征。
特征构造:基于现有特征,通过数学或逻辑操作构造新的特征。
特征选择:从所有可能的特征中选择对模型最有用的子集。
特征转换:将特征转换为更易于模型处理的形式,例如归一化或编码。
特征降维:减少特征的数量,以避免维度灾难和提高模型的泛化能力。
特征工程的目的是使模型能够更有效地从数据中学习,并提高其预测的准确性。

通俗易懂的解释
想象你是一位厨师,准备参加一场烹饪比赛,你需要从各种食材中选择和准备出最好的菜肴。

数据探索:这就像你了解你的食材,知道它们的味道、颜色和质地。
特征提取:就像你从食材中提取出关键的风味和营养,比如从香草中提取香气,从辣椒中提取辣味。
特征构造:就像你将不同的食材组合起来,创造出新的口味,比如将番茄和罗勒混合制作番茄酱。
特征选择:就像你决定哪些食材对你的菜肴最重要,比如选择高质量的肉类和新鲜的蔬菜。
特征转换:就像你将食材加工成适合烹饪的形式,比如将肉切成块,将蔬菜切成丝。
特征降维:就像你从许多可能的食材中挑选出几种,以确保你的菜肴不会过于复杂,容易让评委品尝和理解。
通过特征工程,你能够确保你的菜肴在味道、外观和营养价值上都能达到最佳状态,这与机器学习中通过特征工程提高模型性能的过程非常相似。通过精心选择和准备特征,你可以构建一个强大的模型,就像制作一道美味的菜肴一样。

10.正则化

正则化(Regularization)是机器学习中用于防止模型过拟合的技术。它通过在模型的损失函数中添加一个额外的项来实现,这个额外的项通常与模型的复杂度相关。正则化的主要目的是在模型的复杂性和训练误差之间找到一个平衡点。以下是正则化的多个方面:

L1 正则化:也称为Lasso正则化,通过向损失函数添加权重的绝对值之和来实现,倾向于产生稀疏权重矩阵,即模型中某些权重为零。
L2 正则化:也称为Ridge正则化,通过添加权重的平方和来实现,倾向于让所有权重都很小,但不为零。
弹性网(Elastic Net)正则化:结合了L1和L2正则化,同时考虑了权重的绝对值和平方。
Dropout:一种在训练过程中随机丢弃(置零)一部分神经元输出的方法,用于防止深度学习模型中的过拟合。
早停法(Early Stopping):在训练过程中,当验证集上的性能不再提升时提前终止训练。
数据增强:通过增加数据的多样性来提高模型的泛化能力。
集成方法:如随机森林或梯度提升机,通过组合多个模型来减少过拟合。
正则化参数的选择:选择合适的正则化强度,通常通过交叉验证来确定。
通俗易懂的解释
想象你是一位画家,正在创作一幅画。

L1 正则化:就像你在画布上只用几种颜色,尽量用最少的颜色来表达画作的主题。
L2 正则化:就像你尽量让每种颜色都使用得恰到好处,不让任何一种颜色过于突出或过于淡薄。
弹性网正则化:就像你同时考虑使用最少的颜色和每种颜色的适量,以达到平衡。
Dropout:就像你在创作过程中,有时会故意忽略某些细节,让画作保持一定的神秘感和想象空间。
早停法:就像你在绘画时,感觉到已经达到了想要的效果,就不再继续添加细节,以避免画蛇添足。
数据增强:就像你从不同角度、不同光线下观察你的画作,以确保它在各种情况下都看起来很棒。
集成方法:就像你邀请几位朋友一起创作,每个人贡献不同的视角和风格,最终融合成一幅更加丰富和多元的画作。
正则化参数的选择:就像你在选择画笔和颜料时,需要找到最适合你创作风格的工具。
通过这些正则化技术,你可以确保你的画作既不会过于复杂(过拟合),也不会过于简单(欠拟合),而是恰到好处地表达你的创意和情感。这与机器学习中使用正则化来提高模型的泛化能力和避免过拟合是相似的。

11.分类算法-决策树

决策树是用于决策的树,目标类别作为叶子节点,特征属性的验证被视为非叶子节点,每个分支都是特征属性的输出结果。

◆决策树擅长评估人员,位置和事物的不同品质和特征,并且可以应用于基于规则的信用评估和竞争结果的预测等

◆决策树的决策过程:从根节点开始,测试不同的特征属性,根据不同的结果选择分支,最后落入某个叶子节点以获得分类结果

◆主要的决策树算法:ID3,C4.5,C5.0,CART,CHAID,SLIQ,SPRINT等算法。

◆决策树的构建过程:根据属性的优先级或重要性逐渐确定树的层次结构,以使叶子节点尽可能属于同一类别,通常情况下,采用局部最优的贪心(贪婪)策略来进行决策树的构建。

12.分类算法-支持向量机

◆支持向量机(SupportVectorMachine,SVM)是由瓦普尼克(Vapnik)等人设计的一款分类器,其主要思想是将低维特征空间中的线性不可分问题进行非线性映射,将其映射到高维空间去,从而转化为线性可分的问题

◆应用结构风险最小理论在特征空间优化分割超平面,找到的分类边界尽可能地宽,以便于该算法更加适用于二分类问题,例如,二维平面图中的某些点无序排列,仅仅使用一条直线无法将其准确地划分为两个类别,但是如果将其映射到三维空间中,可能存在一个平面可以实现将这些杂乱无序的点划分为两个类别分类算法---支持向量机

◆为了避免从低维空间到高维空间的转换过程中存在的计算复杂性的增加和“维数灾难”等问题的出现,支持向量机使用了核函数,故不用担心非线性映射的显式表达式问题,直接构建它们在高维空间中的线性分类器,降低了整个过程中的计算复杂度。

◆常见的支持向量核函数包括线性核函数,多项式核函数,径向基函数和二层神经网络核函数等

◆支持向量机是典型的二分类算法,可以用于多个类别的划分问题,但是实现的效果不佳

◆支持向量机在小样本数据集中有很好的分类效果
 

原理
支持向量机是一种强大的分类算法,用于解决线性和非线性问题。SVM 的核心思想是找到数据点之间的最优边界,这个边界被称为“超平面”,它能够最大化地分开不同类别的数据点。

线性可分:在最简单的情况下,如果数据是线性可分的,SVM 会找到一个超平面,使得不同类别的数据点之间的间隔(或距离)最大化。
间隔最大化:SVM 试图最大化超平面到最近的数据点(支持向量)的距离,这些点决定了超平面的位置和方向。
软间隔和正则化:在现实世界的数据中,数据可能不是完全线性可分的。SVM 通过引入软间隔的概念来处理这种情况,允许一些数据点被错误分类,同时通过正则化项来控制模型的复杂度,防止过拟合。
核技巧:SVM 可以使用核函数将数据映射到更高维的空间,以解决非线性问题。常见的核函数包括线性核、多项式核、径向基函数(RBF)核等。
实现步骤
选择合适的核函数:根据数据的特点选择合适的核函数。
训练模型:使用训练数据来确定超平面的参数。
模型评估:在测试数据上评估模型的性能。
参数调优:通过调整参数(如C、γ等)来优化模型。
效果
高维数据处理:SVM 通过核技巧有效地处理高维数据。
稳健性:SVM 对异常值和噪声具有一定的鲁棒性。
泛化能力:通过间隔最大化,SVM 具有较好的泛化能力。
多类分类:SVM 可以通过一对一或一对多的策略扩展到多类分类问题。
优缺点
优点:
在高维空间中表现良好。
对于非线性问题,通过核技巧可以有效地处理。
通过软间隔和正则化,提高了模型的泛化能力。
缺点:
对于大规模数据集,训练过程可能比较慢。
对于新的核函数,选择合适的参数可能比较困难。
对于数据线性不可分的情况,需要选择合适的核函数和参数。
通俗易懂的解释
想象你有一个篮子,里面装着不同颜色的球,你需要将它们分成两堆。

原理:你找到一块木板,试图将它放在篮子里,使得一种颜色的球在木板的一侧,另一种颜色的球在另一侧。你希望木板与球之间的距离尽可能大,这样即使球稍微动一下,也不会跑到另一侧去。
实现步骤:
你首先尝试用木板直接分开球,这就像SVM在寻找线性可分的超平面。
如果有些球颜色很接近,你可能会稍微移动木板,允许一些球被错误地分到另一侧,这就是软间隔的概念。
如果球的大小不一,你可以想象将它们放在一个斜坡上,让木板斜着放,这样不同大小的球也能被分开,这类似于SVM的核技巧。
效果:通过这种方式,你可以非常准确地将球分开,即使有些球颜色很接近,也不会影响整体的分类效果。
优缺点:
优点是这种方法很直观,容易操作,而且对于大多数情况都能很好地工作。
缺点是如果球的颜色非常接近或者大小差异很大,你可能需要调整木板的位置和角度,这可能会稍微复杂一些。

  • 12
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长安er

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值