如果留心高分期刊上发表文章的图的话,经常能够看到目前主流图的不论是从形式上、配色上都是一个相对稳定的风格。
本文章试图模仿nature等期刊的风格,绘制目前较为流行的箱线图
箱线图的好处在于,一方面,它绘制出了原始数据点,使得读者能够轻易的获得整个样本的分布信息;另一方面,通过给同一个观测点添加配对使得读者能够知道数据中哪些变异是由于观察值本身的差异导致的。
安装和加载R包
# 下文中用到了以下4个R包
package.list=c("tidyverse","ggsignif","ggsci","ggprism")
for (package in package.list) {
if (!require(package,character.only=T, quietly=T)) {
install.packages(package)
library(package, character.only=T)
}
}
数据生成和清洗
本示例中,共模拟出双因素数据,其中一个自变量为性别(男、女),另一个自变量为年龄(婴儿、幼儿、儿童),因变量是一个连续变量(score)
# 分别生成6个条件的数据
infancy.male <- rnorm(20,mean = 50, sd = 5)
infancy.female <- rnorm(20,mean = 55, sd = 7)
toddler.male <- rnorm(20,mean = 65, sd = 10)
toddler.female <- rnorm(20,mean = 60, sd