【BFO-BP】基于鳑鲏鱼优化算法优化BP神经网络的风电功率预测研究(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、鳑鲏鱼优化算法概述

三、BFO优化BP神经网络的基本原理

1. 初始化

2. 评估

3. 搜索与更新

4. 迭代与收敛

四、优势与挑战

优势

挑战

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于鳑鲏鱼优化算法(Bitterling Fish Optimization, BFO)优化BP神经网络的研究是一个结合了自然启发的群智能优化算法与人工神经网络的前沿探索。以下是对这一研究方向的详细探讨:

一、引言

BP(Back Propagation)神经网络因其强大的非线性映射能力和学习能力,在模式识别、信号处理、控制优化等领域得到了广泛应用。然而,BP神经网络在训练过程中容易陷入局部最优解,且对初始权重的选择较为敏感。为了克服这些问题,研究者们开始探索使用各种优化算法来改进BP神经网络的训练过程。鳑鲏鱼优化算法作为一种新兴的群智能优化算法,因其独特的搜索机制和较高的搜索效率,为BP神经网络的优化提供了新的思路。

二、鳑鲏鱼优化算法概述

鳑鲏鱼优化算法(BFO)是一种受自然启发的群智能优化算法,由Lida Zareian等人于2024年提出。该算法灵感来源于鳑鲏鱼独特的繁殖机制,特别是它们在寻找合适的产卵壳(如牡蛎)时的行为。在BFO算法中,每个解决方案都被视为一条鳑鲏鱼或一个鱼卵,通过模拟鳑鲏鱼的交配、繁殖和竞争行为来寻找最优解。

三、BFO优化BP神经网络的基本原理

1. 初始化

在BFO算法中,首先生成一个初始种群,每个种群成员代表一个BP神经网络的权重和阈值组合。这些初始权重和阈值可以是随机生成的,也可以是基于某种先验知识设定的。

2. 评估

使用训练数据集对每个BP神经网络进行评估,计算其输出误差或损失函数值。这个值将作为鳑鲏鱼(即解决方案)的适应度或质量指标。

3. 搜索与更新

在BFO算法的迭代过程中,每条鳑鲏鱼(即每个解决方案)都会尝试在解空间中搜索更好的位置(即更好的权重和阈值组合)。这通常通过模拟鳑鲏鱼的交配、繁殖和竞争行为来实现。例如,一些鳑鲏鱼可能会向其他更优秀的鳑鲏鱼靠近(即学习其他解决方案的优点),而另一些则可能会通过随机探索来发现新的解空间区域。

4. 迭代与收敛

重复上述搜索和更新过程,直到满足某个停止条件(如达到最大迭代次数、误差率不再显著降低等)。在迭代过程中,通过不断地搜索和更新,BP神经网络的权重和阈值将逐渐逼近最优解。

四、优势与挑战

优势
  • 全局搜索能力:BFO算法具有全局搜索能力,能够探索更多的解空间区域,从而有可能找到比传统方法更优的BP神经网络权重和阈值组合。
  • 灵活性:BFO算法可以灵活地与其他优化算法或技术相结合,以进一步提高BP神经网络的性能。
挑战
  • 计算复杂度:BFO算法的计算复杂度较高,特别是在处理大规模数据集和复杂网络结构时,可能需要较长的计算时间。
  • 参数设置:BFO算法中的参数(如种群大小、迭代次数、搜索步长等)需要仔细设置,以确保算法的有效性和效率。

五、结论与展望

基于鳑鲏鱼优化算法优化BP神经网络的研究为神经网络的优化提供了一种新的思路和方法。虽然目前这一领域的研究还处于起步阶段,但随着算法的不断完善和应用场景的不断拓展,相信未来会有更多的研究成果涌现出来。同时,也需要关注算法的计算效率和实际应用效果等方面的挑战,以推动这一研究方向的进一步发展。

📚2 运行结果

包括以下几种优化算法:

部分代码:

%% 调用算法 
disp('正在优化,请等待……')
H1 = cell2mat(str(number));
eval(['[fMin , bestX, Convergence_curve ] =',H1,'(SearchAgents_no,Max_iter,lb,ub,dim,fobj);'])

%% 绘制进化曲线
figure
plot(Convergence_curve,'k-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('进化曲线')

setdemorandstream(temp);%此行代码用于生成随机数种子,确保结果可以复现
[~,optimize_test_simu]=fitness(bestX,inputnum,hiddennum_best,outputnum,net,inputn,outputn,inputn_test,outputps,output_test);

%% 比较算法预测值 
str={'真实值','标准BP','优化后BP'};
figure('Units', 'pixels', ...
    'Position', [300 300 860 370]);
plot(output_test,'-','Color',[0 1 0]) 
hold on
plot(test_simu0,'-.','Color',[1 1 0]) 
hold on
plot(optimize_test_simu,'-','Color',[0 0 1])
legend(str)
set (gca,"FontSize",12,'LineWidth',1.2)
box off
legend Box off


%% 比较算法误差
test_y = output_test;
Test_all = [];

y_test_predict = test_simu0;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];


y_test_predict = optimize_test_simu;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
     

str={'真实值','标准BP','优化后BP'};
str1=str(2:end);
str2={'MAE','MAPE','MSE','RMSE','R2'};
data_out=array2table(Test_all);
data_out.Properties.VariableNames=str2;
data_out.Properties.RowNames=str1;
disp(data_out)

%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的
color=    [0    1    0
    0.1339    0.7882    0.8588
    0.1525    0.6645    0.1290
    0.8549    0.9373    0.8275   
    0.1551    0.2176    0.8627
    0.7843    0.1412    0.1373
    0.2000    0.9213    0.8176
      0.5569    0.8118    0.7882
       1.0000    0.5333    0.5176];
figure('Units', 'pixels', ...
    'Position', [300 300 660 375]);
plot_data_t=Test_all(:,[1,2,4])';
b=bar(plot_data_t,0.8);
hold on

for i = 1 : size(plot_data_t,2)
    x_data(:, i) = b(i).XEndPoints'; 
end

for i =1:size(plot_data_t,2)
    b(i).FaceColor = color(i,:);
    b(i).EdgeColor=[0.3353    0.3314    0.6431];
    b(i).LineWidth=1.2;
end

for i = 1 : size(plot_data_t,1)-1
    xilnk=(x_data(i, end)+ x_data(i+1, 1))/2;
    b1=xline(xilnk,'--','LineWidth',1.2);
    hold on
end 

ax=gca;
legend(b,str1,'Location','best')
ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};
set(gca,"FontSize",10,"LineWidth",1)
box off
legend box off

%% 二维图
figure
plot_data_t1=Test_all(:,[1,5])';
MarkerType={'*','>','pentagram','^','v'};
for i = 1 : size(plot_data_t1,2)
   scatter(plot_data_t1(1,i),plot_data_t1(2,i),120,MarkerType{i},"filled")
   hold on
end
set(gca,"FontSize",12,"LineWidth",2)
box off
legend box off
legend(str1,'Location','best')
xlabel('MAE')
ylabel('R2')
grid on


%% 雷达图
figure('Units', 'pixels', ...
    'Position', [150 150 520 500]);
Test_all1=Test_all./sum(Test_all);  %把各个指标归一化到一个量纲
Test_all1(:,end)=1-Test_all(:,end);
RC=radarChart(Test_all1);
str3={'MAE','MAPE','MSE','RMSE','R2'};
RC.PropName=str3;
RC.ClassName=str1;
RC=RC.draw(); 
RC.legend();
RC.setBkg('FaceColor',[1,1,1])
RC.setRLabel('Color','none')
colorList=[181 86 29;
          78 101 155;
          184 168 207;
          231 188 198;
          182 118 108;
          239 164 132;
          253 207 158]./255;

for n=1:RC.ClassNum
    RC.setPatchN(n,'Color',colorList(n,:),'MarkerFaceColor',colorList(n,:))
end

%%
figure('Units', 'pixels', ...
    'Position', [150 150 920 600]);
t = tiledlayout('flow','TileSpacing','compact');
for i=1:length(Test_all(:,1))
nexttile
th1 = linspace(2*pi/length(Test_all(:,1))/2,2*pi-2*pi/length(Test_all(:,1))/2,length(Test_all(:,1)));
r1 = Test_all(:,i)';
[u1,v1] = pol2cart(th1,r1);
M=compass(u1,v1);
for j=1:length(Test_all(:,1))
    M(j).LineWidth = 2;
    M(j).Color = colorList(j,:);

end   
title(str2{i})
set(gca,"FontSize",10,"LineWidth",1)
end
 legend(M,str1,"FontSize",10,"LineWidth",1,'Box','off','Location','southoutside')

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]尹相国,张文,胡柏华,等.基于BP神经网络算法的新一代智能变电站控制障碍分析与定位技术研究[J].自动化与仪器仪表, 2023(8):144-149.、

[2]李伟,何鹏举,杨恒,等.基于粗糙集和改进遗传算法优化BP神经网络的算法研究[J].西北工业大学学报, 2012, 30(4):6.DOI:10.3969/j.issn.1000-2758.2012.04.022.

[3]王晓荣,伦淑娴.基于改进粒子群算法的BP神经网络优化研究[J].渤海大学学报(自然科学版), 2008.DOI:JournalArticle/5aec645bc095d710d4ff1b17.

[3]邹琼,吴曦,张杨,et al.基于麻雀搜索算法优化的BP神经网络模型对2型糖尿病肾病的预测研究[J].中国全科医学, 2024, 27(08):961-970.DOI:10.12114/j.issn.1007-9572.2023.0360.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 12
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 可以使用MATLAB中的深度学习工具箱来实现通过蝴蝶优化算法对LSTM隐含层层数进行寻优的功能。以下是一个简单的示例代码: 首先,需要定义一个适应度函数,用于评估每个LSTM模型的性能。这个函数应该接受一个LSTM模型的隐含层层数作为输入,并返回该模型在训练集上的损失值。 function loss = fitnessFunction(numLayers) % 创建LSTM网络 layers = [ ... sequenceInputLayer(inputSize) lstmLayer(numHiddenUnits, 'OutputMode', 'last', 'NumHiddenUnits', numHiddenUnits, 'NumLayers', numLayers) fullyConnectedLayer(numClasses) softmaxLayer classificationLayer]; % 训练LSTM网络 options = trainingOptions('adam', ... 'MaxEpochs', 50, ... 'MiniBatchSize', 128, ... 'InitialLearnRate', .01, ... 'LearnRateSchedule', 'piecewise', ... 'LearnRateDropFactor', .1, ... 'LearnRateDropPeriod', 10, ... 'GradientThreshold', 1, ... 'Shuffle', 'every-epoch', ... 'Plots', 'training-progress', ... 'Verbose', false); net = trainNetwork(XTrain, YTrain, layers, options); % 在验证集上评估LSTM网络的性能 YPred = classify(net, XValidation); loss = crossentropy(YValidation, YPred); end 接下来,可以使用蝴蝶优化算法来搜索最佳的隐含层层数。以下是一个简单的示例代码: % 定义搜索范围 lb = 1; ub = 5; % 定义蝴蝶优化算法的参数 options = optimoptions('bfo', ... 'Display', 'iter', ... 'MaxFunctionEvaluations', 50, ... 'PlotFcn', @optimplotfval); % 运行蝴蝶优化算法 numLayers = bfo(@fitnessFunction, lb, ub, options); 最终,numLayers将包含最佳的隐含层层数。可以使用这个值来训练最终的LSTM模型,并在测试集上评估其性能。 ### 回答2: 蝴蝶优化算法(Butterfly Optimization Algorithm, BOA)是一种优化算法,它模拟了蝴蝶翅膀的振动行为,在搜索空间中进行参数优化。要使用MATLAB实现蝴蝶优化算法对LSTM隐含层层数进行优化,可以按照以下步骤进行: 1. 导入所需的MATLAB工具箱,如神经网络工具箱和优化工具箱。 2. 创建一个适应度函数,该函数用于评估给定隐含层层数的LSTM模型的性能。可以采用交叉验证、准确率或其他评价指标。 3. 定义搜索空间,即隐含层层数的范围。可以在蝴蝶优化算法中使用连续或离散的参数。 4. 初始化蝴蝶优化算法的参数,包括蝴蝶群体的大小、迭代次数以及其他参数。可以根据实际问题进行调整。 5. 使用MATLAB中的蝴蝶优化函数(如“butterfly_optimization()”)执行搜索过程。将适应度函数、搜索空间和参数作为输入。 6. 在每次迭代中,蝴蝶优化算法会更新蝴蝶群体的位置,并根据适应度函数评估每个位置的性能。 7. 根据蝴蝶优化算法的搜索结果,找到最优的隐含层数。可以在搜索过程结束后,根据蝴蝶的位置和适应度值确定最优解。 下面是一个简单的MATLAB代码示例: ```matlab % 导入所需工具箱 import matlab.net.* import nnet.* % 创建适应度函数 function fitness = lstmFitness(hiddenLayerSize) % 训练和评估LSTM模型 % ... % 返回模型的性能指标,如准确率 end % 定义搜索空间 lb = 1; % 隐含层的最小层数 ub = 10; % 隐含层的最大层数 % 初始化蝴蝶优化算法的参数 nPopulation = 30; % 蝴蝶群体的大小 nIterations = 50; % 迭代次数 % 执行蝴蝶优化算法 [optimalHiddenLayer, optimalFitness] = butterfly_optimization(@lstmFitness, lb, ub, nPopulation, nIterations); % 输出结果 fprintf('最优的隐含层数:%d\n', optimalHiddenLayer); fprintf('最优的适应度值:%f\n', optimalFitness); ``` 需要注意的是,这只是一个简单的示例,实际应用中,可能需要根据具体的问题和数据进行调整和优化。 ### 回答3: 蝴蝶优化算法(Butterfly Optimization Algorithm,简称BOA)是一种模拟蝴蝶群体行为的优化算法,适用于求解复杂的非线性优化问题。 要使用MATLAB实现通过蝴蝶优化算法对LSTM隐含层层数进行寻优,可以按照以下步骤进行: 第一步,建立LSTM模型:在MATLAB中,可以使用深度学习工具箱中的LSTM网络函数建立一个LSTM模型,设定输入层、输出层以及隐含层的神经元个数,其中LSTM网络的隐含层层数可以初始化为一个合理的初始值。 第二步,定义适应度函数:适应度函数用于评估LSTM模型的性能,可以根据具体问题的需求来设定。在此例中,可以设定适应度函数为LSTM模型在验证集上的准确率或者其他性能指标。 第三步,初始化蝴蝶群体:初始化一群蝴蝶,每只蝴蝶代表一个LSTM模型,包含一组隐含层数的取值。 第四步,计算适应度值:对每只蝴蝶应用适应度函数,计算出其适应度值。 第五步,更新蝴蝶位置:根据每只蝴蝶的适应度值,使用BOA算法更新每只蝴蝶的位置。 第六步,判断终止条件:判断是否满足终止条件,如达到最大迭代次数或者达到一个预定义的适应度阈值。 第七步,输出结果:输出迭代过程中适应度最好的蝴蝶位置,即所对应的LSTM隐含层层数。 在实例中,可以利用一个输入数据集与其对应的标签,在训练集上通过适应度函数评估LSTM模型的性能。然后通过蝴蝶优化算法不断更新LSTM隐含层的层数,并在验证集上测试最佳隐含层数对应的模型性能。最终输出最优的LSTM隐含层数及其性能。 需要注意的是,以上步骤只是简要的概述,实际实现中还需要考虑蝴蝶优化算法的具体数学公式、参数设置以及遗传操作的具体实现细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值