💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
Copula 变分贝叶斯算法是一种结合了 Copula 函数和变分贝叶斯方法的算法,用于变分自动编码器 (VAE)。下面我将解释一下这个算法的基本思想和步骤。
首先,让我们回顾一下变分自动编码器 (VAE) 是如何工作的。VAE 是一种生成模型,通过学习输入数据的潜在分布来生成新的样本。它由两个部分组成:编码器和解码器。编码器将输入数据映射到潜在空间中的潜在变量,解码器根据潜在变量生成新样本。
然而,传统的 VAE 假设输入数据的潜在分布是多变量高斯分布。但在实际应用中,数据通常不满足高斯分布的假设。Copula 变分贝叶斯算法将 Copula 函数引入 VAE 中,以更好地建模数据的潜在分布。
Copula 函数是用于建立多变量分布的工具,它可以将边缘分布和相关性分离开来。Copula 函数的一个重要特性是它可以描述非线性相关性,因此可以更好地建模数据之间的复杂关系。
在 Copula 变分贝叶斯算法中,首先使用编码器将输入数据映射到潜在空间中,得到潜在变量的均值和方差。然后,使用 Copula 函数将潜在变量的边缘分布和相关性关系分离开来。具体地说,通过拟合 Copula 模型来建模潜在变量的相关性。
接下来,使用解码器根据潜在变量生成新样本。这里的关键是,解码器根据生成的潜在变量样本和 Copula 模型,通过反向变换来重构数据样本。
最后,在训练过程中,使用变分推断方法来估计潜在变量和模型参数的后验分布。这里的目标是最大化后验概率,从而优化模型的参数。
Copula 变分贝叶斯算法将 Copula 函数引入了 VAE 中,以更好地建模数据的潜在分布和相关性。通过将潜在变量的相关性关系分离开来,该算法可以更准确地生成新样本。
变分贝叶斯(VB),也称为独立平均场近似,已成为近年来贝叶斯网络推理的一种流行方法。它的应用非常广泛,例如在神经网络、压缩感知、聚类等方面。在本文中,VB 中的独立性约束将放宽为条件约束类,在统计学中称为 copula。由于联合概率分布始终属于 copula 类,因此新颖的 copula VB (CVB) 近似是 VB 的广义形式。 通过信息几何,我们将看到 CVB 算法迭代地将原始联合分布投影到 copula 约束空间,直到它达到局部最小 Kullback-Leibler (KL) 散度。这样,所有均值场近似,例如迭代VB、期望最大化(EM)、迭代条件模式(ICM)和k均值算法,都是CVB近似的特例。对于通用贝叶斯网络,还将设计CVB的增强层次结构形式。虽然平均场算法只能返回相关网络的局部最优近似值,但增强型CVB网络是简单网络结构混合的最优加权平均值,可以首次实现全局最优近似。通过对高斯混合聚类的模拟,CVB的分类精度将远远优于最先进的VB、EM和k-means算法。
变分自动编码器是深度学习中用于估计权重的流行算法。尽管如此,VAE解只能通过随机梯度下降(SGD)方法找到。
除了使用梯度得体,我们还可以证明CVB算法可以应用于VAE问题,并直接产生迭代闭式解。由于 CVB 是平均场近似的一种松弛形式,因此 CVB 使用相同的易于处理的迭代方案,而不受变分贝叶斯方法等独立形式的限制。
此外,由于 CVB 是自由形式近似,因此 CVB 的形式可以自动迭代地适应真正的后验分布,直到收敛,而不受 VAE 等固定分布的约束。
最后,CVB方法的主要优点是CVB可以返回近似分布的最优混合。通过这种方式,我们可以将原始网络分解为近似网络的混合,其 CVB 的最优权重与每个近似网络的证据下限 (ELBO) 成正比。
📚2 运行结果
2.1 高斯混合物的CVB:
2.2 双变量高斯的 CVB:
主函数部分代码:
% GAUSS (Ground truth) GAUSS.sigmaX = 2; GAUSS.sigmaY = 1; GAUSS.rho = 0.8; SIGMA.GAUSS = sigma2SIGMA(GAUSS.sigmaX,GAUSS.sigmaY,GAUSS.rho); SIGMA.GAUSS0= sigma2SIGMA(GAUSS.sigmaX,GAUSS.sigmaY,0); % CVB approx nVB = 100; %maximum number of iVB Rho = -0.99:0.01:0.99; nRho = length(Rho); %------------------------------------- declaration CVB.sigmaX = zeros(nRho,nVB); CVB.sigmaY = zeros(nRho,nVB); CVB.rho = zeros(nRho,nVB); CVB.KLD = zeros(nRho,nVB); MR_KLD0 = zeros(nRho,1); CopKLD0 = zeros(nRho,1); MR_KLDend = zeros(nRho,1); CopKLDend = zeros(nRho,1); nCVB = zeros(1,nRho); KLDend = zeros(1,nRho); %------------------------------------- initialization CVB.sigmaX(:,1) = 1; CVB.sigmaY(:,1) = 1; CVB.rho(:,1) = Rho'; %// SIGMA.MR = sigma2SIGMA(CVB.sigmaX(1,1),CVB.sigmaY(1,1),0); MR_KLD0(:) = Func_KLDMultiGauss(SIGMA.MR ,SIGMA.GAUSS0); for iRho = 1:nRho SIGMA.CVB = sigma2SIGMA(CVB.sigmaX(1,1),CVB.sigmaY(1,1),CVB.rho(iRho,1)); CVB.KLD(iRho,1)= Func_KLDMultiGauss(SIGMA.CVB ,SIGMA.GAUSS); CopKLD0(iRho) = CVB.KLD(iRho,1) - MR_KLD0(1); for iVB = 2:2:(nVB-2) %------------------------------------- X to Y [CVB.sigmaX(iRho,iVB) ,CVB.sigmaY(iRho,iVB) ,CVB.rho(iRho,iVB),CVB.KLD(iRho,iVB)] = Func_CVB_biGauss(CVB.sigmaX(iRho,iVB-1),CVB.sigmaY(iRho,iVB-1),CVB.rho(iRho,iVB-1),GAUSS.sigmaX,GAUSS.sigmaY,GAUSS.rho); %------------------------------------- Y to X [CVB.sigmaY(iRho,iVB+1),CVB.sigmaX(iRho,iVB+1),CVB.rho(iRho,iVB+1),CVB.KLD(iRho,iVB+1)] = Func_CVB_biGauss(CVB.sigmaY(iRho,iVB),CVB.sigmaX(iRho,iVB),CVB.rho(iRho,iVB),GAUSS.sigmaY,GAUSS.sigmaX,GAUSS.rho); if (CVB.KLD(iRho,iVB)-CVB.KLD(iRho,iVB+1)) <= (0.01 * CVB.KLD(iRho,iVB)) nCVB(iRho) = iVB; KLDend(iRho) = CVB.KLD(iRho,iVB+1); SIGMA.CVB = sigma2SIGMA(CVB.sigmaX(iRho,iVB+1),CVB.sigmaY(iRho,iVB+1),CVB.rho(iRho,iVB+1)); SIGMA.MR = sigma2SIGMA(CVB.sigmaX(iRho,iVB+1),CVB.sigmaY(iRho,iVB+1),0); MR_KLDend(iRho) = Func_KLDMultiGauss(SIGMA.MR ,SIGMA.GAUSS0); CopKLDend(iRho) = KLDend(iRho) - MR_KLDend(iRho); break; end end end %
🎉3 参考文献
[1]华俊豪.分布式变分贝叶斯算法及其应用[D].浙江大学,2018.
[2]李鹏.基于高斯混合模型的变分自动编码器[D].哈尔滨工业大学,2017.
部分理论引用网络文献,若有侵权联系博主删除。