用于变分自动编码器 (VAE) 的 Copula 变分贝叶斯算法(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 高斯混合物的CVB:

2.2 双变量高斯的 CVB:

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

Copula 变分贝叶斯算法是一种结合了 Copula 函数和变分贝叶斯方法的算法,用于变分自动编码器 (VAE)。下面我将解释一下这个算法的基本思想和步骤。

首先,让我们回顾一下变分自动编码器 (VAE) 是如何工作的。VAE 是一种生成模型,通过学习输入数据的潜在分布来生成新的样本。它由两个部分组成:编码器和解码器。编码器将输入数据映射到潜在空间中的潜在变量,解码器根据潜在变量生成新样本。

然而,传统的 VAE 假设输入数据的潜在分布是多变量高斯分布。但在实际应用中,数据通常不满足高斯分布的假设。Copula 变分贝叶斯算法将 Copula 函数引入 VAE 中,以更好地建模数据的潜在分布。

Copula 函数是用于建立多变量分布的工具,它可以将边缘分布和相关性分离开来。Copula 函数的一个重要特性是它可以描述非线性相关性,因此可以更好地建模数据之间的复杂关系。

在 Copula 变分贝叶斯算法中,首先使用编码器将输入数据映射到潜在空间中,得到潜在变量的均值和方差。然后,使用 Copula 函数将潜在变量的边缘分布和相关性关系分离开来。具体地说,通过拟合 Copula 模型来建模潜在变量的相关性。

接下来,使用解码器根据潜在变量生成新样本。这里的关键是,解码器根据生成的潜在变量样本和 Copula 模型,通过反向变换来重构数据样本。

最后,在训练过程中,使用变分推断方法来估计潜在变量和模型参数的后验分布。这里的目标是最大化后验概率,从而优化模型的参数。

Copula 变分贝叶斯算法将 Copula 函数引入了 VAE 中,以更好地建模数据的潜在分布和相关性。通过将潜在变量的相关性关系分离开来,该算法可以更准确地生成新样本。

变分贝叶斯(VB),也称为独立平均场近似,已成为近年来贝叶斯网络推理的一种流行方法。它的应用非常广泛,例如在神经网络、压缩感知、聚类等方面。在本文中,VB 中的独立性约束将放宽为条件约束类,在统计学中称为 copula。由于联合概率分布始终属于 copula 类,因此新颖的 copula VB (CVB) 近似是 VB 的广义形式。 通过信息几何,我们将看到 CVB 算法迭代地将原始联合分布投影到 copula 约束空间,直到它达到局部最小 Kullback-Leibler (KL) 散度。这样,所有均值场近似,例如迭代VB、期望最大化(EM)、迭代条件模式(ICM)和k均值算法,都是CVB近似的特例。对于通用贝叶斯网络,还将设计CVB的增强层次结构形式。虽然平均场算法只能返回相关网络的局部最优近似值,但增强型CVB网络是简单网络结构混合的最优加权平均值,可以首次实现全局最优近似。通过对高斯混合聚类的模拟,CVB的分类精度将远远优于最先进的VB、EM和k-means算法。

变分自动编码器是深度学习中用于估计权重的流行算法。尽管如此,VAE解只能通过随机梯度下降(SGD)方法找到。

除了使用梯度得体,我们还可以证明CVB算法可以应用于VAE问题,并直接产生迭代闭式解。由于 CVB 是平均场近似的一种松弛形式,因此 CVB 使用相同的易于处理的迭代方案,而不受变分贝叶斯方法等独立形式的限制。

此外,由于 CVB 是自由形式近似,因此 CVB 的形式可以自动迭代地适应真正的后验分布,直到收敛,而不受 VAE 等固定分布的约束。

最后,CVB方法的主要优点是CVB可以返回近似分布的最优混合。通过这种方式,我们可以将原始网络分解为近似网络的混合,其 CVB 的最优权重与每个近似网络的证据下限 (ELBO) 成正比。

📚2 运行结果

2.1 高斯混合物的CVB:

2.2 双变量高斯的 CVB:

主函数部分代码:

% GAUSS (Ground truth)
GAUSS.sigmaX = 2;
GAUSS.sigmaY = 1;
GAUSS.rho = 0.8;
​
SIGMA.GAUSS = sigma2SIGMA(GAUSS.sigmaX,GAUSS.sigmaY,GAUSS.rho);
SIGMA.GAUSS0= sigma2SIGMA(GAUSS.sigmaX,GAUSS.sigmaY,0);
​
% CVB approx
nVB  = 100; %maximum number of iVB
​
Rho  = -0.99:0.01:0.99;
​
nRho = length(Rho);
%------------------------------------- declaration
CVB.sigmaX = zeros(nRho,nVB);
CVB.sigmaY = zeros(nRho,nVB);
CVB.rho    = zeros(nRho,nVB);
CVB.KLD   = zeros(nRho,nVB);
​
MR_KLD0 = zeros(nRho,1);
CopKLD0 = zeros(nRho,1);
MR_KLDend = zeros(nRho,1);
CopKLDend = zeros(nRho,1);
​
nCVB = zeros(1,nRho);
KLDend = zeros(1,nRho);
%------------------------------------- initialization
CVB.sigmaX(:,1) = 1;
CVB.sigmaY(:,1) = 1;
CVB.rho(:,1) = Rho';
%//
​
SIGMA.MR = sigma2SIGMA(CVB.sigmaX(1,1),CVB.sigmaY(1,1),0);
MR_KLD0(:)  = Func_KLDMultiGauss(SIGMA.MR  ,SIGMA.GAUSS0);
​
for iRho = 1:nRho
    
    SIGMA.CVB = sigma2SIGMA(CVB.sigmaX(1,1),CVB.sigmaY(1,1),CVB.rho(iRho,1));
    
    CVB.KLD(iRho,1)= Func_KLDMultiGauss(SIGMA.CVB ,SIGMA.GAUSS);
    CopKLD0(iRho) = CVB.KLD(iRho,1) - MR_KLD0(1);
        
for iVB = 2:2:(nVB-2) 
    
    %------------------------------------- X to Y
    
    [CVB.sigmaX(iRho,iVB)  ,CVB.sigmaY(iRho,iVB)  ,CVB.rho(iRho,iVB),CVB.KLD(iRho,iVB)] = Func_CVB_biGauss(CVB.sigmaX(iRho,iVB-1),CVB.sigmaY(iRho,iVB-1),CVB.rho(iRho,iVB-1),GAUSS.sigmaX,GAUSS.sigmaY,GAUSS.rho);
​
    %------------------------------------- Y to X
    
    [CVB.sigmaY(iRho,iVB+1),CVB.sigmaX(iRho,iVB+1),CVB.rho(iRho,iVB+1),CVB.KLD(iRho,iVB+1)] = Func_CVB_biGauss(CVB.sigmaY(iRho,iVB),CVB.sigmaX(iRho,iVB),CVB.rho(iRho,iVB),GAUSS.sigmaY,GAUSS.sigmaX,GAUSS.rho);
    
    if (CVB.KLD(iRho,iVB)-CVB.KLD(iRho,iVB+1)) <= (0.01 * CVB.KLD(iRho,iVB))
        nCVB(iRho) = iVB;
        KLDend(iRho) = CVB.KLD(iRho,iVB+1);
        
        SIGMA.CVB = sigma2SIGMA(CVB.sigmaX(iRho,iVB+1),CVB.sigmaY(iRho,iVB+1),CVB.rho(iRho,iVB+1));
        SIGMA.MR  = sigma2SIGMA(CVB.sigmaX(iRho,iVB+1),CVB.sigmaY(iRho,iVB+1),0);
        
        MR_KLDend(iRho) = Func_KLDMultiGauss(SIGMA.MR  ,SIGMA.GAUSS0);
        CopKLDend(iRho) = KLDend(iRho) - MR_KLDend(iRho);
        
        break;
    end
end
end
%
​

🎉3 参考文献

[1]华俊豪.分布式变分贝叶斯算法及其应用[D].浙江大学,2018.

​[2]李鹏.基于高斯混合模型的变分自动编码器[D].哈尔滨工业大学,2017.

部分理论引用网络文献,若有侵权联系博主删除。

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值