这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
重大更新!!!
咱们的《AIGC面试高频问题以及算法模型精讲》干货大礼包再次更新啦!!
说明:
1)目前干货文档总字数9.57万,不管是模型基本功还是每个问题的答案都尽可能详尽;
2)重点给大家深度讲解了机器学习、深度学习、AIGC三个大方向的13个经典模型
3)每个模型从实现****原理、应用场景、优缺点三个产品经理必懂的维度深度讲解,结合应用案例更易于大家理解
4)从百度、腾讯、字节、商汤、科大讯飞等面试精选AI面试高频面试30题,后续会继续补充
5)高频面试总共10****0道,包含产品经理面试常规问题、AI产品经理通用问题和AIGC项目相关问题,每一个问题都给出了回答思路、回答框架以及参考答案,帮助大家提高面试准备效率
6)本内容为飞书文档图文教程格式,大家可以随到随学,也方便后续持续更新。
详细的目录如下,需要的小伙伴可以详细看一下~
第一章:机器学习和深度学习的关系
第二章:机器学习7大经典算法
算法一:K近邻算法【分类算法】
1.1 KNN 算法的实现原理
1.2 KNN应用场景举例:预测候选人能不能拿到 Offer
1.3 KNN 算法优缺点
算法二:线性回归【回归算法】
2.1 线性回归算法的实现原理
2.2 线性回归算法的应用场景:广告投放
2.3 线性回归算法的优缺点
算法三:逻辑回归【分类算法】
3.1 逻辑回归算法的原理
3.2 逻辑回归算法的应用
3.3 逻辑回归算法的优缺点
算法四:朴素贝叶斯【分类算法】
4.1 朴素贝叶斯算法实现原理
4.2 朴素贝叶斯的应用案例:要不要购买延误险
4.3 朴素贝叶斯的优缺点
算法五:决策树与随机森林【分类算法】
5.1 决策树算法的实现原理
5.2 决策树的应用案例:预测用户违约
5.3 决策树的优缺点
5.4 随机森林:集体的力量
**算法六:**支持向量机【分类算法】
6.1 SVM 算法的实现原理
6.2 SVM应用场景:预测股票市场的涨与跌?
6.3 SVM 算法优缺点
算法七:K-means 聚类算法【回归算法】
7.1 K-means 算法实现原理
7.2 应用案例:K-means 算法对用户分层
7.3 K-means 聚类算法的优缺点
第三章:深度学习3大经典模型
一、神经网络
二、深度学习经